
www.manaraa.com

Graduate Theses and Dissertations Iowa State University Capstones, Theses and
Dissertations

2016

Secrecy-preserving reasoning in simple description
logic knowledge bases
Gopalakrishnan Krishnasamy Sivaprakasam
Iowa State University

Follow this and additional works at: https://lib.dr.iastate.edu/etd

Part of the Artificial Intelligence and Robotics Commons

This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University
Digital Repository. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Iowa State University
Digital Repository. For more information, please contact digirep@iastate.edu.

Recommended Citation
Krishnasamy Sivaprakasam, Gopalakrishnan, "Secrecy-preserving reasoning in simple description logic knowledge bases" (2016).
Graduate Theses and Dissertations. 15026.
https://lib.dr.iastate.edu/etd/15026

http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Fetd%2F15026&utm_medium=PDF&utm_campaign=PDFCoverPages
http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Fetd%2F15026&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/etd?utm_source=lib.dr.iastate.edu%2Fetd%2F15026&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Fetd%2F15026&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Fetd%2F15026&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/etd?utm_source=lib.dr.iastate.edu%2Fetd%2F15026&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/143?utm_source=lib.dr.iastate.edu%2Fetd%2F15026&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/etd/15026?utm_source=lib.dr.iastate.edu%2Fetd%2F15026&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digirep@iastate.edu

www.manaraa.com

Secrecy-preserving reasoning in simple description logic knowledge bases

by

Gopalakrishnan Krishnasamy Sivaprakasam

A dissertation submitted to the graduate faculty

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

Major: Computer Science

Program of Study Committee:

Giora Slutzki, Major Professor

Les Miller

Carl K Chang

Samik Basu

Ananda Weerasinghe

Iowa State University

Ames, Iowa

2016

Copyright c© Gopalakrishnan Krishnasamy Sivaprakasam, 2016. All rights reserved.

www.manaraa.com

ii

TABLE OF CONTENTS

LIST OF FIGURES . iv

ACKNOWLEDGEMENTS . v

ABSTRACT . vi

CHAPTER 1. INTRODUCTION . 1

1.1 Description Logics . 2

1.2 Secrecy-preserving Query Answering Problem 3

CHAPTER 2. SECRECY-PRESERVING REASONING IN ACYCLIC DL-LiteR

KNOWLEDGE BASES . 7

2.1 Introduction . 7

2.2 Preliminaries - Syntax and semantics of DL-LiteR 8

2.2.1 Syntax . 8

2.2.2 Semantics . 9

2.3 Computation of A∗ . 11

2.4 Graph representation of ABoxes and BCQs over DL-LiteR KBs 18

2.5 Secrecy-Preserving Reasoning in DL-LiteR KBs 22

2.6 Answering Queries . 31

2.7 Complexities of computing A∗, E and Query Answering 32

2.8 Conclusions . 33

CHAPTER 3. SECRECY-PRESERVING QUERY ANSWERING IN ELH

KNOWLEDGE BASES . 34

3.1 Introduction . 34

3.2 Syntax and Semantics . 36

www.manaraa.com

iii

3.3 Computation of A∗ and T ∗ . 37

3.4 Secrecy-Preserving Reasoning . 46

3.5 Query Answering . 52

3.6 Conclusions . 57

CHAPTER 4. KEEPING SECRETS IN MODALIZED DL KNOWLEDGE

BASES . 58

4.1 Introduction . 58

4.2 Syntax and Semantics of ELH♦ . 60

4.3 Computation of a Model for ELH♦ KB Σ and A∗ 61

4.4 Secrecy-Preserving Reasoning in ELH♦ KBs . 70

4.5 Query Answering . 75

4.6 Conclusions . 78

CHAPTER 5. SUMMARY AND DISCUSSION 79

APPENDIX A. ADDITIONAL MATERIAL . 81

A.1 Additional Material for Chapter 2 . 81

A.1.1 Proof of Lemma 2.3.1 . 81

A.1.2 Proof of Lemma 2.3.2 . 83

A.1.3 Proof of Lemma 2.3.3 . 85

BIBLIOGRAPHY . 89

www.manaraa.com

iv

LIST OF FIGURES

Figure 2.1 Expansion rules for computing A∗1 . 13

Figure 2.2 Expansion rules for computing A∗12 . 13

Figure 2.3 Expansion rules for computing A∗ . 14

Figure 2.4 The ABox and query graphs . 19

Figure 2.5 Secrecy closure rules obtained by inverting rules in Figures 2.1 and 2.2 23

Figure 2.6 Secrecy closure rules obtained by inverting rules in Figure 2.3 24

Figure 2.7 Secrecy closure rules for q ∈ SCQ . 25

Figure 2.8 The graphs of A∗ and A∗ \ E . 26

Figure 2.9 The graphs of A∗ \ E and queries . 31

Figure 3.1 TBox Tableau expansion rules . 38

Figure 3.2 ABox Tableau expansion rules. 42

Figure 3.3 Inverted ABox Tableau expansion rules 47

Figure 3.4 Inverted TBox Tableau expansion rules. 49

Figure 3.5 Query answering algorithm for assertional queries 51

Figure 3.6 Query answering algorithm for GCI queries 55

Figure 4.1 Local expansion rules . 63

Figure 4.2 Global expansion rules . 64

Figure 4.3 Completed constraint tree T = 〈V, k0,E,L〉 64

Figure 4.4 Inverted local expansion rules . 71

Figure 4.5 Inverted global expansion rule . 72

Figure 4.6 Secrecy-preserving tree TE = 〈V, k0,E,LE〉 73

Figure 4.7 Query answering algorithm for assertional queries 76

www.manaraa.com

v

ACKNOWLEDGEMENTS

I would like to express my deepest gratitude and thanks to my advisor Dr. Giora Slutzki,

for everything that he taught me with kindness and patience. Without his insight, guidance,

effort and encouragement, this dissertation would not have been possible. I am also grateful to

him for his effort to help me to get the financial support during the entire period that I worked

with him.

I would also like to thank my committee members for their encouragement, insightful com-

ments and time: Dr. Les Miller, Dr. Carl K Chang, Dr. Samik Basu and Dr. Ananda

Weerasinghe.

I would additionally like to thank Dr. Jin Tian for his encouragement and help to continue

to pursue this program.

www.manaraa.com

vi

ABSTRACT

In this dissertation, we study the problem of secrecy-preserving query answering (SPQA)

against knowledge bases (KBs) under the open world assumption (OWA) - the assumption that

typical KBs are incomplete. Protection of secret information is a critical requirement for the

design of information systems in semantic web applications. Recently, semantic web technolo-

gies are widely used in many application domains like healthcare, bioinformatics, intelligence

and national security. So, there is a pressing need for developing robust secret protection mech-

anisms suitable for ontology-based information systems. In our work, we use a logical approach

to enforce secrecy where the domain knowledge is represented in an appropriate description

logic (DL). In particular, to protect secret information we take advantage of OWA. Under

OWA, a querying agent cannot distinguish whether a query is being protected or it cannot be

inferred from the KB. The central idea in our approach to protect the secret information is to

build a logical shield called “envelope” around the confidential information and answers queries

correctly as much as possible without compromising the secrecy.

We have chosen lightweight DL languages like DL-LiteR and ELH for studying SPQA

problem with single querying agent in the first half of this dissertation. We have considered

DL-LiteR KB with acyclic TBox and the secrecy set containing both assertional queries and

Boolean Conjunctive Queries (BCQs). By computing a suitable envelope, we protect the secrets

in the secrecy set. We have used Kleenes 3-valued semantics to prove the correctness of the

query answering procedure. We have also performed a detailed analysis of computational

complexities of various algorithms used in this dissertation. In ELH logic, we define a secrecy

set that contains both assertional and general concept inclusion queries. A new strategy has

been employed to construct the SPQA system for the given ELH KB. This includes designing

efficient query answering algorithms based on recursive decomposition of queries and have

shown that the query answering algorithms are sound and complete, thus providing correctness

www.manaraa.com

vii

proof. In the second half of this dissertation, we have studied the SPQA problem in ELH♦

(ELH augmented with modal operator ♦). Given a ELH♦ KB and a finite secrecy set, we

compute a SPQA system in the form of a tree, called secrecy-preserving tree. In this case the

secrecy set contains only assertions. Since the information available in secrecy-preserving tree

is not sufficient to answer all the queries, we further augment the query answering procedure

with a recursive procedure. The recursive procedure is based on th idea of breaking the query

into smaller assertions all the way until the information in the secrecy-preserving tree can be

used.

www.manaraa.com

1

CHAPTER 1. INTRODUCTION

The explosive growth in online banking activities, social networks, web based travel services

and other internet based business and homeland security applications contain massive amounts

of private data of users, administrators, service providers and governmental agencies. This con-

tributes, on one hand, to unprecedented levels of data sharing and, on the other hand, to grave

concerns about privacy and confidentiality of communication between WWW users. It will

be an indispensable aspect of future web based service industry that private data while being

shared must remain inviolate. In these applications, automated reasoning plays a central role

in processing a large volume of data in an automated way for (a) storing data in a particular

format; and (b) protecting the private data and sharing the public data. Automated reasoning

(Knowledge representation and reasoning) is a branch of artificial intelligence that is concerned

with representing knowledge in some well known logical languages and manipulating the rep-

resented knowledge, by reasoning, to generate new knowledge Brachman et al. (1992); Fagin

et al. (2003). One of the crucial tasks in automated reasoning is selecting a suitable logical lan-

guage that has nice modeling and computability properties to represent the domain knowledge.

The well known logical languages like propositional logic and first order logic (FOL) are not

good candidates to represent knowledge for the many application domains because they lack

either good modeling or efficient computability properties. In order to represent the domain

knowledge for wide range of applications and to study the reasoning tasks efficiently, a family

of formal languages called description logics have been considered, see Baader (2003); Hitzler

et al. (2009); Calvanese et al. (2007).

www.manaraa.com

2

1.1 Description Logics

Description Logics (DLs) Baader (2003) are a decidable fragments of FOL. DLs are a family

of logic based knowledge representation formal languages which have an adequate modeling and

good computability properties. That is, DLs have the reasonable balance between expressivity

and efficiency of reasoning. Further, DLs are considered to be underlying logics of Web Ontology

Languages (OWLs) Krötzsch (2012) which are recommended by the WWW consortium (W3C)

as a knowledge representation languages for the web.

Generally, DLs have been classified based on their expressivity and computational complex-

ity of reasoning tasks Hitzler et al. (2009); Ortiz and Šimkus (2012); Krötzsch (2012). There

are expressive DLs and lightweight DLs. Expressive DLs are very expressive, and the complex-

ity of the reasoning tasks in these DLs tends to be high. The prototypical ALC language and

its extensions are examples of expressive DLs. On the other hand, lightweight DLs have been

designed to have limited expressive power in order to achieve lower computational complexity

for the reasoning tasks. The important and widely used lightweight DLs are DL-LiteR, EL,

ELH, EL+ and their extensions.

In this dissertation, we choose to use lightweight description logic to represent the domain

knowledge and study secrecy related reasoning problems. The reason we have chosen lightweight

description logic languages like DL - LiteR, EL and ELH for representing knowledge is that,

on one hand, they have sufficient expressive power for many applications and, on the other

hand, the corresponding reasoning tasks can be done efficiently. There are two more practical

reasons for selecting these languages: (a) reasoning systems are available for these languages.

QuOnto Acciarri et al. (2005) is the standard reasoning system for the language DL-LiteR, and

CEL Mendez and Suntisrivaraporn (2009) is the reasoning system for EL family of languages,

and (b) the popular ontologies like Systemized Nomenclature of Medicine (SNOMED) and

Galen Medical Knowledge Base (GALEN) for medical domain, and the Gene Ontology (GO)

for bioinformatics domain are designed and developed using the DLs EL or its extensions, for

details see Baader et al. (2006). Further, we have considered a language with modal operator

ELH♦ to represent specific domain information. For instance, the statement ‘It is possible

www.manaraa.com

3

that Joe is a teacher’ can be modeled as ♦teacher(Joe) in ELH♦ language. ELH♦ is the DL

ELH augmented with the modal operator ♦. The following are some of the reported works in

modalized DLs. Lutz et al. (2001) studied the satisfiability problem in Modalized ALC, and

Tao et al. (2012) studied the query answering problem in Modalized ALC.

1.2 Secrecy-preserving Query Answering Problem

Preserving secrecy in a database setting is a problem of paramount importance and it has

been studied for a long time, see Biskup and Weibert (2008); Biskup et al. (2010); Sicherman

et al. (1983). With the advent of the semantic web and its increasingly pervasive usage, there

is a lot of interest in studying this problem in knowledge base (KB) setting, see Bao et al.

(2007); Grau et al. (2013); Tao et al. (2010, 2014). The concern here is that in view of the

fundamental assumption that KBs possess incomplete knowledge, a situation could arise in

which logical reasoning (used to produce implicit knowledge from the explicit one stored in

the KB) may possibly lead to disclosure of secret information, see Grau et al. (2013). Some

approaches dealing with “information protection” are based on access control mechanisms Bell

and LaPadula (1973), defining appropriate policy languages to represent obligation, provision

and delegation policies Kagal et al. (2003), and based on theory of knowledge (epistemology)

Halpern and O’Neill (2005).

One approach to secrecy in incomplete database was presented in Biskup and Weibert

(2008); Biskup et al. (2010); Biskup and Tadros (2012) in the form of controlled query evaluation

(CQE). The idea behind CQE is that rather than providing strict access control to data, the

CQE approach enforces secrecy by checking (at run time) whether from a truthful answer to

a query a user can deduce secret information. In this case the answer is distorted by either

simply refusing to answer or by outright lying. For a study of confidentiality in a setting that

is an adaptation of CQE framework to ontologies over OWL 2 RL profile of OWL 2, see Grau

et al. (2013).

In response to concerns raised in Weitzner et al. (2008), the authors in Bao et al. (2007); Tao

et al. (2010, 2014), have developed a secrecy framework that attempts to satisfy the following

competing goals: (a) it protects secret information and (b) queries are answered as informatively

www.manaraa.com

4

as possible (subject to satisfying property (a)). The notion of an envelope to hide secret

information against logical inference was first defined and used in Tao et al. (2010). In Tao et al.

(2014), the authors introduced a more elaborate conceptual framework for secrecy-preserving

query answering (SPQA) under Open World Assumption (OWA) with multiple querying agents.

This approach is based on OWA and (so far) it has been restricted to instance-checking queries.

Specifically, in Bao et al. (2007); Tao et al. (2010, 2014) the main idea was to utilize the

secret information within the reasoning process, but then answering “Unknown” whenever the

answer is truly unknown or in case the true answer could compromise confidentiality. Further,

in Krishnasamy Sivaprakasam and Slutzki (2016), the authors extended the work of Tao et

al., reported in Tao et al. (2010), to the ELH language and studied secrecy in the context of

assertions as well as general concept inclusions (GCIs).

An approach of SPQA system adapted in this dissertation is explained as follows:

(a) given a KB Σ in the language of our choice, we design a sound and complete tableau algo-

rithm with some suitable restrictions to compute a finite set of assertional consequences

(A∗) or GCI consequences (T ∗) of the KB Σ;

(b) given Σ and a secrecy set S, we compute an envelope E of S by inverting the rules of

tableau algorithm considered in (a), for more details see Tao et al. (2010, 2014). The idea

behind the envelope concept is that no expression in the envelope can be logically deduced

from information outside the envelope. Once such envelopes are computed, the answers to

the queries are censored whenever the queries belong to the envelopes. Since, generally,

an envelope for a given secrecy set is not unique, the developer has some freedom to

output an envelope from the available choices, depending on his/her needs or preferences;

and

(c) given the consequences of Σ (here we consider A∗) and the envelope E for the secrecy set

S, we answer queries without revealing secrets. Usually in SPQA framework queries are

answered by checking their membership in A∗\E. Since, generally, A∗ does not contain all

the statements entailed by Σ, we need to extend the query answering procedure from just

membership checking. Towards that end we have designed recursive algorithms to answer

www.manaraa.com

5

more complicated queries. To answer an assertion query q, the algorithm first checks if

q ∈ A∗ \ E in which case the answer is “Yes”; otherwise, the given query is broken into

subqueries based on the constructors, and the algorithm is applied recursively on the

subqueries based on the constructors defined in the language.

In this dissertation, we have studied the SPQA problem for single querying agent in four

different languages. In Chapter 2, we consider the lightweight DL DL-LiteR to study SPQA

problem with secrecy set consisting of both assertional queries and Boolean conjunctive queries

(BCQs). In this case, we assume that TBox T , a finite set of GCIs, is acyclic. Using a

tableau algorithm, we construct A∗, an inferential closure of the given ABox A, a finite set of

assertions, which includes both positive as well as negative assertions. Note that A∗ contains all

the consequences of Σ. We use a notational variant of Kleene 3-valued semantics, which we call

OW-semantics as it fits nicely with OWA. This allows us to answer queries, including Boolean

Conjunctive Queries (BCQs) with “Yes”, “No” or “Unknown”, as opposed to answering just

“Yes” or “No” as in Ontology Based Data Access (OBDA) framework, see Calvanese et al.

(2007), thus improving the informativeness of the query-answering procedure. One of the

main contributions of this work is a study of answering BCQs without compromising secrecy.

Using the idea of secrecy envelopes, we give a precise characterization of when BCQs should

be answered “Yes”, “No” or “Unknown”. We prove the correctness of the secrecy-preserving

query-answering algorithm and briefly discuss its computational complexity.

In Chapter 3, the SPQA problem under OWA for ELH KBs has been presented. In this

work, we allow the querying agents to answer both assertional and GCI queries. We employ

two efficient tableau procedures designed to compute some consequences of ABox (A) and

TBox (T) denoted by A∗ and T ∗ respectively. A secrecy set of a querying agent is subset S of

A∗ ∪T ∗ which the agent is not allowed to access. Once envelopes are computed, they are used

to efficiently answer assertional and GCI queries without compromising the secret information

in S. Answering GCI queries while preserving secrecy has not been studied in the current

literature. Since we are not computing all the consequences of the KB, answers to the queries

based on just A∗ and T ∗ could be erroneous. To fix this problem, we further augment our

algorithms to make the query answering procedure foolproof. The augmented query answering

www.manaraa.com

6

procedures are designed based on the idea of breaking the queries into smaller assertions or

GCIs all the way until the information in the sets A∗ and T ∗ can be used. Further, we prove

that the query answering algorithm is correct and show that it is efficient.

In Chapter 4, we have studied SPQA problem under OWA for ELH♦ KBs. Here ELH♦ is

a description logic ELH augmented with a modal operator ♦. We employ a tableau procedure

designed to compute a rooted labeled tree T which contains information about some assertional

consequences of the given KB. Given a secrecy set S, which is a finite set of assertions, we

compute a function E, called an envelope of S, which assigns a set of assertions to each node

of T. E provides logical protection to the secrecy set S against the reasoning of a querying

agent. Once the tree T and an envelope E are computed, we define the secrecy-preserving tree

TE . Based on the information available in TE , assertional queries with modal operator ♦ can

be answered efficiently while preserving secrecy. To the best of our knowledge, this work is the

first one studying secrecy-preserving reasoning in description logic augmented with a modal

operator. Since we are not computing all the consequences of the knowledge base, answers to

the queries based on just secrecy-preserving tree TE could be erroneous. To fix this problem,

we further augment our algorithms by providing recursive query decomposition algorithm to

make the query answering procedure foolproof.

www.manaraa.com

7

CHAPTER 2. SECRECY-PRESERVING REASONING IN ACYCLIC

DL-LiteR KNOWLEDGE BASES

2.1 Introduction

Recently, the World Wide Web Consortium (W3C) has proposed OWL 2 profiles which

have limited modeling features, but provide substantial improvements in scalability as well as

a significant reduction in the complexity of various reasoning tasks. Based on this proposal,

there has been a lot of work done on developing languages tailored to specific applications, in

particular those that involve massive amount of data, i.e., large ABoxes. In addition, a lot of

work has dealt with answering conjunctive queries over these data sets, see Ortiz and Šimkus

(2012). The goal is to provide just enough expressive power to deal with those applications,

while keeping low complexity of reasoning, see Calvanese et al. (2007); Krötzsch (2012). DL−

Lite family is one such family of languages designed with an eye towards precisely these kinds

of applications, see Artale et al. (2009); Calvanese et al. (2007); Ortiz and Šimkus (2012).

In this chapter we continue the work begun in Bao et al. (2007); Tao et al. (2010). The

framework introduced in Tao et al. (2014), which we use here as well, was illustrated on very

simple examples: the Propositional Horn Logic and the Description Logic AL. Here we consider

the SPQA problem under OWA for DL-LiteR acyclic KBs. In contrast to previous work, an

important contribution here is that we allow Boolean Conjunctive Assertions/Queries (BCQs)

both in the specification of secrets as well as in the queries. Given a DL-LiteR KB (consisting

of an ABox A and an acyclic TBox T) and a secrecy set S consisting of both instance-assertions

as well as BCQs, the querying agent is allowed to ask queries of both kinds. Moreover, we allow

the ABox of the KB to contain both positive and negative assertions, see Artale et al. (2009).

By OWA, the answer to a query against a KB can be “Yes”, “No” or “Unknown”. As the first

www.manaraa.com

8

step in constructing our SPQA system, we use a tableau algorithm to compute a finite set A∗

which consists of the consequences of the KB (with respect to the TBox), both positive and

negative. To prove the completeness of this algorithm, we use the 3-valued OW-semantics as

introduced in Tao et al. (2014), see also Section 2.2.2. Next, starting from the secrecy set S we

compute a finite set of assertions, viz., the envelope E ⊆ A∗ of the secrecy set S, whose goal

is to provide a “logical shield” against reasoning launched from A∗ \ E (outside the envelope)

and whose aim is to “penetrate” the secrecy set S (i.e., to figure out which assertions are in

S). Computation of the envelope is based on the ideas given in Tao et al. (2010, 2014), viz.,

inversion of the tableau expansion rules used in computing A∗. Moreover, we add two special

expansion rules to deal with BCQs. The details are presented in Section 2.5.

The answer to the instance-checking queries posed to the KB is based on membership of

those queries in the set A∗ \ E. To answer BCQs, we use graph terminology: we express both

the ABox A∗ \E and the BCQ q as node-edge labeled graphs, see also Ortiz and Šimkus (2012).

The answer is based on the existence or non-existence of specific mappings between these two

graphs. In more detail, if there is a (labeled) homomorphism from the query graph G[q] (for

q) to the ABox graph G[A∗ \E] (for A∗ \E) then the answer to the query is “Yes”; if there are

no such homomorphisms and there is a ‘non-clashy’ mapping from G[q] to G[A∗ \ E] then the

answer to the query is “Unknown”; otherwise the answer is “No”, see Section 2.6 for details.

Based on the OW-semantics, we are able to provide an exact characterization of all answers.

2.2 Preliminaries - Syntax and semantics of DL-LiteR

2.2.1 Syntax

A vocabulary of DL-LiteR is a triple < NO, NC , NR > of countably infinite, pairwise

disjoint sets. The elements of NO are called objects or individual names, the elements of NC

are called concept names (unary relation symbols) and the elements NR are called role names

(binary relation symbols). The set of basic concepts and the set of basic roles, respectively

denoted by BC and BR, are defined below by the grammar (a) where A ∈ NC , P ∈ NR and P−

stands for the inverse of the role name P . The set of concept expressions and role expressions

www.manaraa.com

9

in DL-LiteR, denoted by C and R, is defined by the grammar (b) where B ∈ BC, and R ∈ BR.

(a) B ::= A | ∃R (b) C ::= B | ¬B

R ::= P | P− E ::= R | ¬R

Note that BC ⊆ C, and BR ⊆ R. For C ∈ C and D ∈ BC, we write ¬C to stand for D if

C = ¬D and for ¬D if C = D. Similarly, for E ∈ R and R ∈ BR, ¬E denotes R if E = ¬R

and ¬R if E = R. Assertions in DL-LiteR are expressions of the form C(a) and E(a, b) where

a, b ∈ NO, C ∈ C and E ∈ R; these are called basic assertions if C ∈ BC and E ∈ BR.

There are two types of subsumptions in DL-LiteR,

a) concept subsumptions of the form B v C with B ∈ BC and C ∈ C, and

b) role subsumptions of the form R v E with R ∈ BR and E ∈ R.

Note the asymmetry between the left-hand side and the right-hand side of subsumptions in

DL-LiteR.

2.2.2 Semantics

In this section we reformulate Kleene’s 3-valued logic so as to provide semantics forDL-LiteR

which we feel is particularly well-suited in the context of OWA, see also Tao et al. (2014). It

allows us to give an “epistemic separation” between “known that Yes”, “known that No” and

“Unknown”. We use the idea of weak 3-partition 1, defined as follows. Let X be a non-empty

set, and A1, A2, A3 (possibly empty) subsets of X. The ordered triple (A1, A2, A3) is a weak

3-partition of X if

1. A1 ∪A2 ∪A3 = X and

2. ∀i, j with i 6= j, Ai ∩Aj = ∅.

An OW-interpretation of the language DL-LiteR is a tuple I =
〈
∆, ·I

〉
where ∆ is a non-empty

domain and ·I is an interpretation function such that

1It is weak in that we do not require that the sets Ai are non-empty.

www.manaraa.com

10

• ∀a ∈ NO, aI ∈ ∆,

• ∀A ∈ NC , AI = (AIN , A
I
U , A

I
Y) is a weak 3-partition of ∆, and

• ∀P ∈ NR, P I = (P IN , P
I
U , P

I
Y) is a weak 3-partition of ∆×∆.

We extend the interpretation function ·I inductively to all concept and role expressions as

follows. Let C ∈ BC, P ∈ NR, R ∈ BR and suppose that CI = (CIN , C
I
U , C

I
Y), P I =

(P IN , P
I
U , P

I
Y) and RI = (RIN , R

I
U , R

I
Y). Then,

• (¬C)I = (CIY , C
I
U , C

I
N) and (¬R)I = (RIY , P

I
U , R

I
N),

• (P−)I = ((P−)IN , (P−)IU , (P−)IY), where (P−)IX = {(a, b)| (b, a) ∈ P IX}, X ∈ {N,U, Y },

• (∃R)I = ((∃R)IN , (∃R)IU , (∃R)IY), where (∃R)IY = {a| ∃b ∈ ∆[(a, b) ∈ RIY]}, (∃R)IN =

{a| ∀b ∈ ∆[(a, b) ∈ RIN]} and (∃R)IU = ∆ \ ((∃R)IY ∪ (∃R)IN).

Remark 1: The subscripts “N ”, “U ” and “Y ” stand for “No”, “Unknown” and “Yes”,

which represent the possible dispositions of a domain element with respect to a given OW-

interpretation of a concept. Similarly, for roles. In addition, all the weak 3-partitions in

this chapter are ordered: First the N -component, second the U -component and third the

Y -component.

Let I =
〈
∆, ·I

〉
be an OW-interpretation, B ∈ BC, C ∈ C, R ∈ BR, E ∈ R and a, b ∈ NO.

We say that

• I satisfies C(a), notation I |= C(a), if aI ∈ CIY ;

• I satisfies E(a, b), notation I |= E(a, b), if (aI , bI) ∈ EIY ;

• I satisfies B v C, notation I |= B v C, if BIY ⊆ CIY and CIN ⊆ BIN , and

• I satisfies R v E, notation I |= R v E, if RIY ⊆ EIY and EIN ⊆ RIN .

DL-LiteR KB is a pair Σ = 〈A, T 〉, where A, called the ABox 2, is a finite, non-empty set of

assertions of the form A(a), ¬A(a), P (a, b) and ¬P (a, b) with A ∈ NC , P ∈ NR and a, b ∈ NO,

2Note that we do not allow assertions of the form ∃R(a) in the ABox A

www.manaraa.com

11

and T is a finite set of concept and role subsumptions, called TBox. An OW-interpretation

I =
〈
∆, ·I

〉
is an OW-model of Σ, notation I |= Σ, if for all α ∈ A ∪ T , I |= α. Let α be

an assertion or a concept/role subsumption. We say that Σ entails α, notation Σ |= α, if all

OW-models of Σ satisfy α.

Remark 2: OW-interpretations have many applications in Computer Science, see Avron

(1991); Fitting (1985). There are several reasons why OW-interpretations are of particular

interest in our work.

• OW-interpretations naturally reflect the Open World Assumption (OWA) which applies

to most KB applications. Thus, one way think of an OW-interpretation is as an agent

of sorts, who, when presented with a particular scenario, may not possess complete in-

formation regarding the various memberships of domain elements in the interpretation of

some concepts and roles.

• Since the classical (the usual 2-valued) interpretations are special kind of OW-interpretations,

no generality is lost. Actually, some flexibility is gained in that OW-interpretations can, if

needed, interpret some concepts (or roles) classically while others using the OW-approach.

• Another, more technical, reason is the following. As part of the completeness proof,

we need to show that Σ |= ¬A(a) implies ¬A(a) ∈ A∗ where A∗ is a completed ABox

(i.e., no assertion expansion rules are applicable). This can be easily shown using OW-

interpretations, see Section 2.2.2. This result is very important because completeness

proof plays a central role in proving the correctness of the query answering procedure.

However, since generally, classical interpretations satisfy (¬A)I ≡ ∆\AI 6= {aI | ¬A(a) ∈

A∗}, the above implication does hot hold.

2.3 Computation of A∗

In this section, we will use a tableau-style procedure to construct a set of consequences of

the given KB Σ = 〈A, T 〉, denoted by A∗. Since our main interest in this chapter is studying

secrecy-preserving query answering, we shall henceforth assume that all TBoxes are acyclic

www.manaraa.com

12

which will guarantee that A∗ is finite. Finding the set of all assertions entailed by an EL+ KB

with acyclic TBox has been considered by Mei et al., see Mei et al. (2009).

Given Σ = 〈A, T 〉, before we start computing A∗, first we arrange the individual names

occurring in Σ, assertions in A and subsumptions in T in lexicographic order. Also, we program

the algorithm which computes A∗ in a way that selects these individual names, assertions and

subsumptions in lexicographic order. This ordering will enable us to get a unique A∗, see

Calvanese et al. (2007). The computation of A∗ proceeds in several stages. In the first stage,

A∗ is initialized as A and expanded by exhaustively applying expansion rules listed in Figure

2.1. The resulting ABox is denoted by A∗1. The sets of all the individual names appearing in

A and A∗1 are denoted by OΣ and O∗, respectively. O∗ is initialized as OΣ and expanded with

applications of the vN∃- and v∃∃-rules. An individual a is said to be fresh if a ∈ O∗ \ OΣ . It

is important to note that all the fresh individuals are added in the first stage (Figure 2.1) and

no new individuals are added in the following stages. This can be easily seen by inspecting

the rules in Figures 2.1, 2.2 and 2.3. The rules are designed based on subsumptions present in

the TBox T . To name the rules in Figure 2.1, we adopt the following conventions. The first

subscript of v represents the type of the symbol on the left hand side of the subsumption, and

the second represents the type of the symbol on the right hand side. For example, the vN∃ -

rule has a concept name on the left hand side of the subsumption and existential restriction on

the right hand side.

In order to write the rules more succinctly, we define two functions inv (standing for inverse)

and neg (standing for negation) as follows:

• for P ∈ NR, inv(R,a,b) =

P (a, b) if R = P,

P (b, a) if R = P−

• for R ∈ BR, neg(E,a,b) =

inv(R, a, b) if E = R,

¬inv(R, a, b) if E = ¬R

For instance, neg(¬P−, a, b) = ¬inv(P−, a, b) = ¬P (b, a). In addition, we use L to denote

either a concept name or a negation of concept name. We write ¬L with the intended meaning

that ¬L = ¬A if L = A, and ¬L = A if L = ¬A.

www.manaraa.com

13

vNL − rule : if A(a) ∈ A∗, A v L ∈ T and L(a) /∈ A∗,
then A∗ := A∗ ∪ {L(a)};

vN∃ − rule : if A(a) ∈ A∗, A v ∃R ∈ T , and ∀d ∈ O∗, inv(R, a, d) /∈ A∗,
then A∗ := A∗ ∪ {inv(R, a, b)} where b is fresh, and O∗ := O∗ ∪ {b};

v∃L − rule : if inv(R, a, b) ∈ A∗, ∃R v L ∈ T , and L(a) /∈ A∗,
then A∗ := A∗ ∪ {L(a)};

v∃∃ − rule : if inv(R, a, b) ∈ A∗, ∃R v ∃S ∈ T , and ∀d ∈ O∗, inv(S, a, d) /∈ A∗,
then A∗ := A∗ ∪ {inv(S, a, c)} where c is fresh, and O∗ := O∗ ∪ {c};

vRE − rule : if inv(R, a, b) ∈ A∗, R v E ∈ T and neg(E, a, b) /∈ A∗,
then A∗ := A∗ ∪ {neg(E, a, b)}.

We use the following conventions not stated explicitly within the individual rules:

A ∈ NC , L ∈ {A,¬A | A ∈ NC}, R, S ∈ BR and E ∈ R.

Figure 2.1 Expansion rules for computing A∗1

vN@ − rule : Let A(a) ∈ A∗ and A v ¬∃R ∈ T .
∀c ∈ O∗ : if ¬inv(R, a, c) /∈ A∗, then A∗ := A∗ ∪ {¬inv(R, a, c)};

v∃@ − rule : Let inv(R, a, b) ∈ A∗ and ∃R v ¬∃S ∈ T .
∀c ∈ O∗ : if ¬inv(S, a, c) /∈ A∗, then A∗ := A∗ ∪ {¬inv(S, a, c)}.

Computing A∗12: An application of each rule adds negation of role assertions for all c ∈ O∗

Figure 2.2 Expansion rules for computing A∗12

In the second stage, A∗1 is expanded by applying expansion rules listed in Figure 2.2. The

resulting ABox is denoted as A∗12. Observe that every application of a rule in Figure 2.2

adds at most |O∗| new assertions to A∗1. To name the rules in Figure 2.2, we adopt the same

naming conventions as for the rules in Figure 2.1 except that the second symbol in the subscript

represents the right hand side of v: @ stands for a negated unqualified existential restriction.

In the third stage, A∗12 is expanded by applying rules listed in Figure 2.3. The resulting

final ABox is denoted as A∗. To name the rules in Figure 2.3, we follow the previously adopted

conventions. Additionally, negation in the subscript (see Figure 2.3) should be thought of as

follows: For each rule in Figures 2.1 and 2.2, e.g. vNL-rule with A v L, we have a corresponding

vNL¬-rule, which captures the effect of the subsumption ¬L v ¬A (which is not allowed in

www.manaraa.com

14

vNL¬ − rule : if ¬L(a) ∈ A∗, A v L ∈ T and ¬A(a) /∈ A∗,
then A∗ := A∗ ∪ {¬A(a)};

vN∃¬ − rule : if ∀b ∈ O∗, ¬inv(R, a, b) ∈ A∗, A v ∃R ∈ T , and ¬A(a) /∈ A∗,
then A∗ := A∗ ∪ {¬A(a)};

v∃L¬ − rule : Let ¬L(a) ∈ A∗ and ∃R v L ∈ T .
∀c ∈ O∗ : if ¬inv(R, a, c) /∈ A∗, then A∗ := A∗ ∪ {¬inv(R, a, c)};

v∃∃¬ − rule : Let ∀b ∈ O∗, ¬inv(S, a, b) ∈ A∗ and ∃R v ∃S ∈ T .
∀c ∈ O∗ : if ¬inv(R, a, c) /∈ A∗, then A∗ := A∗ ∪ {¬inv(R, a, c)};

vRE¬ − rule : if ¬neg(E, a, b) ∈ A∗, R v E ∈ T and ¬inv(R, a, b) /∈ A∗,
then A∗ := A∗ ∪ {¬inv(R, a, b)};

vN@¬ − rule : if inv(R, a, b) ∈ A∗, A v ¬∃R ∈ T and ¬A(a) /∈ A∗,
then A∗ := A∗ ∪ {¬A(a)}.

v∃@¬ − rule : Let inv(S, a, b) ∈ A∗ and ∃R v ¬∃S ∈ T .
∀c ∈ O∗ : if ¬inv(R, a, c) /∈ A∗, then A∗ := A∗ ∪ {¬inv(R, a, c)}.

We use the same conventions as in Figure 2.1

Figure 2.3 Expansion rules for computing A∗

our syntax). It is easy to see that during the execution of rules in Figure 2.3 none of the rules

in Figures 2.1 and 2.2 becomes applicable.

We say that A∗ is completed or that it is an assertional closure of Σ = 〈A, T 〉 if no assertion

expansion rule is applicable. We denote by Λ the tableau algorithm which (lexicographically)

applies assertion expansion rules, first those in Figure 2.1 then those in Figure 2.2 and finally

those in Figure 2.3, until no further applications are possible. Since, as explained previously,

Λ works in a lexicographic fashion, for a given KB Σ = 〈A, T 〉, it outputs a unique A∗.

Since some of the expansion rules can in some cases be applied exponentially many times

in the size of the KB, the size of A∗ can be exponential in the size of the KB. As an example

consider a DL−LiteR KB Σ = 〈A, T 〉, whereA = {A(a)} and T = {A v ∃P1, A v ∃Q1,∃P−i v

∃Pi+1, ∃P−i v ∃Qi+1, Qi v Pi+1, 1 ≤ i ≤ n}. Clearly, TBox T is acyclic and the size of the KB

is linear in n. To compute A∗ for this KB, the v∃∃-rule has to be applied exponentially many

times. It follows that A∗ is exponential in the size of the Σ, implying that the computation of

A∗ could require exponential time as well.

www.manaraa.com

15

Example 2.3.1. Let Σ = 〈A, T 〉 be a DL-LiteR KB, where A is defined by 1 and 2, and T is

defined by 3, 4, 5 and 6,

1 A(a) 3 A v B 5 ∃P− v ¬∃R

2 D(b) 4 A v ∃P 6 C v ¬D

Applying the assertion expansion rules in Figure 2.1, we can derive the following conclu-

sions.

7 B(a) vNL on 1,3

8 P (a, c), c is fresh vN∃ on 1,4

Therefore A∗1 = A ∪ {B(a), P (a, c)}. Now applying the assertion expansion rules in Figure

2.2 on A∗1, we calculate A∗12.

9 ¬R(c, a),¬R(c, b),¬R(c, c) v∃@ on 8,5

Thus A∗12 = A∗1∪{¬R(c, a),¬R(c, b),¬R(c, c)}. Finally, using the assertion expansion rules

in Figure 2.3 on A∗12, we get A∗.

10 ¬C(b) vNL¬ on 2,6

Hence, A∗ = A∗12 ∪ {¬C(b)}.

Observe that if we restrict the application of expansions rules in Figure 2.1, 2.2 and 2.3

to those ABox assertions involving only non-fresh individual names then we get {A(a), B(a),

D(b),¬C(b)}. �

In general, if the computation is restricted to ABox assertions involving non-fresh individual

names, then it is easy to see that the size of A∗ is polynomial in the size of Σ and that it can

be computed in polynomial time.

Soundness: The proof of the soundness of the tableau procedure Λ is split into two parts,

dealing separately with rules in Figures 2.1 and 2.2 and Figure 2.3. The proof of Lemma 2.3.1

is standard and given in Appendix A.1.1.

Lemma 2.3.1 (Soundness of Λ, Part A). Let A∗12 be a completed ABox obtained from Σ

by first applying the rules listed in Figure 2.1 and then the rules of Figure 2.2. Then for every

OW-model I of Σ, there is a OW-model I∗12 of Σ such that I∗12 |= A∗12, where the domain of

www.manaraa.com

16

I∗12 is same as the domain of I and I∗12 remains same as I except for the interpretation of fresh

individuals.

Let O∗ be the set of individual names that occur in the completed ABox A∗12. We define

a new OW-interpretation I∗ =
〈
∆∗, ·I∗

〉
, where ∆∗ = I∗12(O∗), i.e., ∆∗ is precisely the set of

those elements of ∆ that are interpretations of individuals in O∗. The interpretation function

·I∗ is defined as a restriction of I∗12 to ∆∗:

(i) ∀a ∈ O∗[aI∗ = aI
∗
12];

(ii) ∀A ∈ NC [(AI
∗
N = A

I∗12
N ∩∆∗, AI

∗
U = A

I∗12
U ∩∆∗, AI

∗
Y = A

I∗12
Y ∩∆∗)];

(iii) ∀P ∈ NR[P I
∗

N = P
I∗12
N ∩ (∆∗×∆∗), P I

∗
U = P

I∗12
U ∩ (∆∗×∆∗), P I

∗
Y = P

I∗12
Y ∩ (∆∗×∆∗)] and

(iv) I∗ is extended to compound concepts and roles as in Section 2.2.2.

Since every weak 3-partition of ∆ induces a weak 3-partition of ∆∗, we have the following

consequence of Lemma 2.3.1,

Corollary 2.3.1. I∗ is an OW-model of 〈A∗12, T 〉.

The proof of the next lemma is standard and given in Appendix A.1.2.

Lemma 2.3.2 (Soundness of Λ, Part B). Let A∗ be the completed ABox obtained from A∗12

by applying the rules listed in Figure 2.3. For any OW-model I of Σ, let I∗ =
〈
∆∗, ·I∗

〉
be an

OW-interpretation as defined above. Then, I∗ is an OW-model of Σ and I∗ |= A∗.

In summary, given an OW-model I of Σ, using the proof of Lemma 2.3.1, we transform

I to another OW-model I∗12 of Σ such that I∗12 |= A∗12, where the domain of I∗12 is same as

the domain of I. In fact, I∗12 remains the same as I except for the interpretation of fresh

individuals. Moreover, I∗12 is constructed in a canonical fashion, i.e., it is uniquely determined

from I. Having obtained I∗12, using Lemma 2.3.2, we modify I∗12 to obtain yet another OW-

model I∗ of Σ such that I∗ |= A∗, where the domain of I∗ was defined to be I∗12(O∗).

We use the notation Σ |=∗ α, where α is a concept (or role) name assertion or negation of

a concept (or role) name assertion, to represent the following statement: For every OW-model

www.manaraa.com

17

I of Σ, I∗ is an OW-model of Σ and I∗ |= α. We can combine Lemma 2.3.1 and Lemma 2.3.2

into a single theorem.

Theorem 2.3.1. (Soundness of Λ): Let A∗ be a completed ABox obtained from Σ by first

applying the rules listed in Figure 2.1, then rules listed in Figure 2.2, and finally the rules listed

in Figure 2.3. Then Σ |=∗ A∗, i.e., for every α ∈ A∗, Σ |=∗ α.

Completeness: To prove the completeness of Λ, we first define a canonical OW-interpretation

J =
〈
∆, ·J

〉
for a completed ABox A∗ as follows:

- ∆ = O∗ = {a ∈ NO| a occurs in A∗};

- aJ = a, for each individual name a ∈ O∗;

- for A ∈ NC , AJ = (AJN , A
J
U , A

J
Y), where

AJY = {a| A(a) ∈ A∗},

AJN = {a| ¬A(a) ∈ A∗} and

AJU = (∆ \AJY) \AJN ;

- for P ∈ NR, PJ = (PJN , P
J
U , P

J
Y), where

PJY = {(a, b)| P (a, b) ∈ A∗},

PJN = {(a, b)| ¬P (a, b) ∈ A∗} and

PJU = ((∆×∆) \ PJY) \ PJN ;

- J is extended to compound concepts and roles as in Section 2.2.2

The proof that J is a OW-model of Σ is standard and given in the Appendix A.1.3.

Lemma 2.3.3. Let Σ = 〈A, T 〉 be a DL-LiteR KB. Then ∀α ∈ A ∪ T , J |= α.

Theorem 2.3.2 (Completeness of Λ). Let A∗ be a completed ABox obtained from Σ by

applying Λ. Let α be a concept (or role) name assertion or negation of a concept (or role)

name assertion 3. Then Σ |=∗ α ⇒ α ∈ A∗.
3Recall that assertions of the form ∃R(a) do not belong to A∗

www.manaraa.com

18

Proof. Let J be the canonical model of Σ as defined above, and let α be an assertion as in

the statement of the theorem. Suppose Σ |=∗ α. By Lemma 2.3.3, J |= Σ and hence J ∗ |= α.

Since A∗ is completed, J ∗ = J , and so J |= α. In the following, we argue by cases for different

α.

- α = A(a), A ∈ NC . Then, J |= A(a)⇒ a ∈ AJY ⇒ A(a) ∈ A∗.

- α = ¬A(a), A ∈ NC . Then, J |= ¬A(a)⇒ a ∈ AJN ⇒ ¬A(a) ∈ A∗.

- α = P (a, b), P ∈ NR. Then, J |= P (a, b)⇒ (a, b) ∈ PJY ⇒ P (a, b) ∈ A∗.

- α = ¬P (a, b), P ∈ NR. Then, J |= ¬P (a, b)⇒ (a, b) ∈ PJN ⇒ ¬P (a, b) ∈ A∗. �

2.4 Graph representation of ABoxes and BCQs over DL-LiteR KBs

In this section, we will use node-edge labeled directed graph to represent the completed

ABox A∗ as well as Boolean conjunctive queries (BCQs), see Ortiz and Šimkus (2012) for

similar representations. This helps “visualize” reasoning about such queries as well as being

useful in formulating precise conditions for answering BCQs with ‘Yes’, ‘No’ and ‘Unknown’.

The ABox graph for A∗ is node-edge labeled digraph G[A∗] = (V [A∗], E[A∗], L[A∗]) with

nodes V [A∗] = O∗ and edges E[A∗] = {(a, b) | R(a, b) ∈ A∗, for some R ∈ R}, where each

node a ∈ V [A∗] is labeled with the set of literals L[A∗](a) = { L | L(a) ∈ A∗} and each directed

edge (a, b) ∈ E[A∗] is labeled with a set of roles L[A∗](a, b) = { R | R(a, b) ∈ A∗}.

Example 2.4.1. Let A∗ = {A(a),¬D(a), B(b), F (b), H(d), P (a, b), Q(a, b), P (b, c), Q(b, c), R(a, d),

¬S(a, d),¬Q(c, c)}. Then ABox graph G[A∗] for A∗ is given in Figure 2.4.

We next define the syntax and semantics of Boolean conjunctive queries. Let NV denote a

countably infinite set of variables.

Definition 2.4.1. A Boolean conjunctive query over DL-LiteR is a finite expression of the

form ∃y1, y2, ..., yn[
∧k
i=1Ai(ζi) ∧

∧m
j=1 Pj(ηj , µj)], where

- Ai ∈ NC for 1 ≤ i ≤ k, Pj ∈ NR for 1 ≤ j ≤ m and yl ∈ NV , 1 ≤ l ≤ n,

- ζi, ηj , µj ∈ {y1, y2, ..., yn} ∪NO for 1 ≤ i ≤ k and 1 ≤ j ≤ m .

www.manaraa.com

19

a

b c

d
A,¬D

B,F

H

R,¬S

G[A∗]

P,Q

P,Q

¬Q

b

y z

A

G[q]

B B

P

P

Q

Figure 2.4 The ABox and query graphs

Query atoms of a BCQ q are of two sorts: concept atoms A(v), and role atoms P (u, v),

where u, v ∈ NV ∪NO, A ∈ NC and P ∈ NR. By Atoms(q) we denote the set of concept and

role atoms occurring in q. For instance the concept atoms in the BCQ q = ∃y, z[A(b)∧B(y)∧

B(z) ∧ P (b, y) ∧ Q(b, z) ∧ P (z, y)] are: A(b), B(y) and B(z) and the role atoms are: P (b, y),

Q(b, z) and P (z, y).

As was the case with the ABox, we can represent the BCQ as a node-edge labeled directed

graph capturing the syntactic structure of the query. The query graph of a BCQ q is the

node-edge labeled directed graph G[q] = (V [q], E[q], L[q]) with nodes V [q] = {v ∈ NV ∪

NO | v occurs in q} and edges E[q] = {(u, v) | for some role name P, P (u, v) ∈ Atoms(q)};

each node v ∈ V [q] is labeled with the set of concept names L[q](v) = {A| A(v) ∈ Atoms(q)}

and each edge (u, v) ∈ E[q] is labeled with the set of role names L[q](u, v) = {P | P (u, v) ∈

Atoms(q)}.

Example 2.4.2. The query graph G[q] of the BCQ q = ∃y, z[A(b) ∧ B(y) ∧ B(z) ∧ P (b, y) ∧

Q(b, z) ∧ P (z, y)] mentioned above is given in Figure 2.4.

An interpretation of a BCQ q is provided by an OW-interpretation I =
〈
∆, ·I

〉
together

with a valuation which is a function π : V [q] → ∆ such that π(a) = aI for each individual

a ∈ V [q] ∩ NO. We say that (I, π) satisfies A(v), notation (I, π) |= A(v), if π(v) ∈ AIY .

(I, π) falsifies A(v), notation (I, π) |= ¬A(v), if π(v) ∈ AIN . Similarly, (I, π) satisfies P (u, v),

notation (I, π) |= P (u, v), if (π(u), π(v)) ∈ P IY and (I, π) falsifies P (u, v), notation (I, π) |=

¬P (u, v), if (π(u), π(v)) ∈ P IN . We say that (I, π) satisfies q, notation (I, π) |= q, if (I, π) |= α

www.manaraa.com

20

for every α ∈ Atoms(q). (I, π) falsifies q, notation (I, π) ||= q, if (I, π) falsifies some atom

α ∈ Atoms(q). I satisfies q, notation I |= q, if there exists a valuation π : V [q]→ ∆ such that

(I, π) |= q. In this case, we say that I is an OW-model of q. I falsifies q, notation I ||= q, if

for all valuations π : V [q]→ ∆, (I, π) ||= q.

Recall that given any OW-model I of Σ we have defined (a uniquely determined) OW-

model I∗ and we introduced the notation Σ |=∗ α to mean that for any OW-model I of Σ, I∗

is an OW-model of Σ and I∗ |= α. Finally, a BCQ q is entailed from Σ, notation Σ |=∗ q, if

for every OW-model I of Σ, I∗ |= q. A BCQ q is disentailed from Σ, notation Σ ||=∗ q, if for

every OW-model I of Σ, I∗ ||= q.

Notation: We write h : V [q] −→c V [A∗] to denote the fact that h is a mapping h : V [q] →

V [A∗] which “respects constants”, i.e. h(a) = a, for every individual a ∈ V [q] ∩NO.

Definition 2.4.2. Mapping h : V [q] −→c V [A∗] is a labeled graph homomorphism, if

- for every node v in V [q], L[q](v) ⊆ L[A∗](h(v)), and

- for every edge (u, v) in E[q], L[q](u, v) ⊆ L[A∗](h(u), h(v)).

In the next two theorems we provide a complete characterization of entailment and disen-

tailment of BCQs in terms of properties of mappings h : V [q] −→c V [A∗].

Theorem 2.4.1. Let q be a BCQ and Σ a DL-LiteR KB. Then, Σ |=∗ q iff there exists a

labeled graph homomorphism h : V [q] −→c V [A∗].

Proof. (⇒) Suppose Σ |=∗ q and let J =
〈
∆, ·J

〉
be the canonical OW-model of Σ. Then,

J ∗ = J , and by hypothesis, J |= q. Hence, for some valuation π : V [q] → O∗ = V [A∗],

(J , π) |= α, for every α ∈ Atoms(q). Note that π : V [q] −→c V [A∗]. Now, let v ∈ V [q] and

A(v) ∈ Atoms(q). Then, (J , π) |= A(v) ⇒ π(v) ∈ AJY ⇒ A(π(v)) ∈ A∗ ⇒ A ∈ L[A∗](π(v)).

Similarly, for u, v ∈ V [q] with P (u, v) ∈ Atoms(q): (J , π) |= P (u, v) ⇒ (π(u), π(v)) ∈ PJY ⇒

P (π(u), π(v)) ∈ A∗ ⇒ P ∈ L[A∗](π(u), π(v)). It follows that π is a labeled graph homomor-

phism.

(⇐) Assume that h : V [q] −→c V [A∗] is a labeled graph homomorphism and let I =
〈
∆, ·I

〉
be

an arbitrary OW-model of Σ. By Lemma 2.3.2, I∗ =
〈
∆∗, ·I∗

〉
, with ∆∗ = I∗(O∗), is an OW-

www.manaraa.com

21

model of Σ and I∗ |= A∗. Since (I∗ ◦ h) : V [q] → ∆∗, we have (I∗ ◦ h)(a) = I∗(h(a)) = aI
∗

for all a ∈ V [q] ∩ NO. I.e. I∗ ◦ h is a valuation. It remains to show that I∗ is an OW-

model of q. Let v ∈ V [q] and A ∈ L[q](v). Then, by the definition of labeled homomorphism,

A ∈ L[A∗](h(v))⇒ A(h(v)) ∈ A∗ ⇒ h(v)I
∗ ∈ AI∗Y ⇒ (I∗◦h)(v) ∈ AI∗Y ⇒ (I∗, (I∗◦h)) |= A(v).

Similarly, for u, v ∈ V [q] with P ∈ L[q](u, v): P ∈ L[A∗](h(u), h(v)) ⇒ P (h(u), h(v)) ∈ A∗ ⇒

(h(u)I
∗
, h(v)I

∗
) ∈ P I∗Y ⇒ ((I∗ ◦ h)(u), (I∗ ◦ h)(v)) ∈ P I∗Y ⇒ (I∗, (I∗ ◦ h)) |= P (u, v). Thus,

Σ |=∗ q. �

Next we define mappings that cannot be extended to labeled homomorphisms and prove a

tight connection between such mappings and disentailment.

Definition 2.4.3. A mapping f : V [q] −→c V [A∗] is said to be clashy, if

- there exist v ∈ V [q] and A ∈ L[q](v) such that ¬A ∈ L[A∗](f(v)), or

- there exist u, v ∈ V [q] and P ∈ L[q]((u, v)) such that ¬P ∈ L[A∗]((f(u), f(v))).

Theorem 2.4.2. Let q be a BCQ and Σ a DL-LiteR KB. Then, Σ ||=∗ q iff every mapping

f : V [q] −→c V [A∗] is clashy.

Proof. (⇒) Assume Σ ||=∗ q and let J =
〈
∆, ·J

〉
be the canonical OW-model of Σ. Then,

J ∗ = J and so for every valuation τ : V [q] → ∆∗, there is an α ∈ Atoms(q) such that

(J , τ) |= ¬α. Since ∆∗ = J (O∗) = O∗ = V (A∗) and τ(a) = aJ = a for all a ∈ V [q] ∩ NO,

τ : V [q] −→c V [A∗] and it follows that τ is clashy. Moreover, since τ is arbitary the conclusion

follows.

(⇐) Suppose now that every mapping f : V [q] −→c V [A∗] is clashy. Let I =
〈
∆, ·I

〉
be an

arbitrary OW-model of Σ. By Lemma 2.3.2, I∗ =
〈
∆∗, ·I∗

〉
with ∆∗ = I∗(O∗) is an OW-model

of Σ such that I∗ |= A∗. Let π : V [q] → ∆∗ be an arbitrary valuation and define the mapping

gπ : V [q]→ V [A∗] by

gπ(v)=

a if v = a ∈ NO ∩ V [q]

c if v ∈ NV ∩ V [q],

where π(v) = cI
∗

and c be the first constant that satisfies in some arbitrary (but fixed) total or-

dering of O∗. It is easy to check that π = I∗◦gπ (in other words, π factors via V [A∗]). Since, by

www.manaraa.com

22

assumption, gπ is clashy, for some A(v) ∈ Atoms(q), ¬A ∈ L[A∗](gπ(v)) or for some P (u, v) ∈

Atoms(q), ¬P ∈ L[A∗]((gπ(u), gπ(v))). In the first case, ¬A(gπ(v)) ∈ A∗ ⇒ gπ(v)I
∗ ∈ AI∗N ⇒

π(v) ∈ AI
∗
N implying, (I∗, π) |= ¬A(v). In the second case, ¬P ((gπ(u), gπ(v))) ∈ A∗ ⇒

(gπ(u)I
∗
, gπ(v)I

∗
) ∈ P I∗N ⇒ (π(u), π(v)) ∈ P I∗N implying, (I∗, π) |= ¬P (u, v). It follows that,

Σ ||=∗ q. �

2.5 Secrecy-Preserving Reasoning in DL-LiteR KBs

Given a knowledge base Σ and a finite secrecy set S consisting of assertions in A∗ and

BCQs, the goal is to answer queries while preserving secrecy. Here we assume that A∗ has been

computed previously. Our approach is to compute a subset E ⊆ A∗, called the secrecy envelope

for S, so that by protecting E, the querying agent cannot logically infer any assertions in S,

see Tao et al. (2010, 2014). It is interesting to note that, though the BCQs in S are not in E,

we can store the information pertinent to answering BCQs in E. The OWA plays a vital role

in protecting secret information when query answering is the main objective. When answering

a query with “Unknown”, the querying agent cannot differentiate between the following cases:

(1) the case that the answer to the query is actually unknown to the KB reasoner and (2) the

case that the answer is being protected in order to maintain secrecy.

Formally, the secrecy set is made of two parts, S = SΣ ∪ SCQ, where SΣ ⊆ A∗0 ⊆ A∗ with

A∗0 the subset of assertions which do not involve fresh individuals, and SCQ is a finite set of

BCQs. Clearly, the size of A∗0 is polynomial to the size of the input KB.

Definition 2.5.1. Given a knowledge base Σ = 〈A, T 〉 and a finite secrecy set S = SΣ ∪ SCQ,

where SΣ ⊆ A∗ and SCQ is a finite set of BCQs, a secrecy envelope for S, denoted by E, is a

set of assertions having the following properties:

1 SΣ ⊆ E ⊆ A∗,

2 for every α ∈ E, A∗ \ E 6|=∗ α, and

3 for every q ∈ SCQ, A∗ \ E 6|=∗ q and A∗ \ E |6|=∗ q.

www.manaraa.com

23

v←NL − rule : if L(a) ∈ E, A v L ∈ T and A(a) ∈ A∗ \ E,
then E := E ∪ {A(a)};

v←∃L − rule : if L(a) ∈ E, ∃R v L ∈ T and inv(R, a, c) ∈ A∗ \ E, for some c ∈ O∗

then E := E ∪ {inv(R, a, c)};
v←RE − rule : if neg(E, a, b) ∈ E, R v E ∈ T and inv(R, a, b) ∈ A∗ \ E,

then E := E ∪ {inv(R, a, b)};
v←N@ − rule : if ¬inv(R, a, b) ∈ E, A v ¬∃R ∈ T and A(a) ∈ A∗ \ E,

then E := E ∪ {A(a)};
v←∃@ − rule : if ¬inv(S, a, b) ∈ E, ∃R v ¬∃S ∈ T and inv(R, a, c) ∈ A∗ \ E,

for some c ∈ O∗, then E := E ∪ {inv(R, a, c)}.

Figure 2.5 Secrecy closure rules obtained by inverting rules in Figures 2.1 and 2.2

.

Property 2 says that no information in E can be entailed from A∗ \ E. Property 3 makes

sure that BCQs in SCQ can neither be entailed nor disentailed from A∗ \ E. To compute an

envelope, we use the idea of inverting assertion expansion rules (see Tao et al. (2010), where

this approach was first utilized). Induced by the tableau expansion rules in Figure 2.1 (except

for the rules vN∃ and v∃∃) and in Figure 2.2, we have the corresponding “inverted” secrecy

closure rules in Figure 2.5. The reason for the omission of secrecy closure rules corresponding

to the rules vN∃ and v∃∃ is that an application of these rules results in adding assertions with

fresh individual names. By the hidden name assumptions (HNA), the querying agent is barred

from asking any queries that involve fresh individual names, see also Tao et al. (2010).

As an illustration of a secrecy closure rules in Figure 2.5, consider the v←N@-rule. Let

¬P (a, b) ∈ E, A v ¬∃P ∈ T and A(a) ∈ A∗ \ E. If the querying agent asks the query

q = ¬P (a, b), then the reasoner R could answer “Yes”. This is because of the vN@-rule and the

fact that A(a) /∈ E. So, to protect ¬P (a, b), we have to put A(a) in E. Similarly, in Figure 2.6

the secrecy closure rules are given corresponding to the rules in Figure 2.3. For instance, we

consider the v←∃L¬-rule. Let ¬P (a, b) ∈ E, ∃P v B ∈ T and ¬B(a) ∈ A∗ \ E. If the querying

agent asks the query q = ¬P (a, b), then the reasoner R could answer “Yes”. This is because

of the v∃L¬-rule and the fact that ¬B(a) /∈ E. So, to protect ¬P (a, b), we have to put ¬B(a)

www.manaraa.com

24

v←NL¬ − rule : if ¬A(a) ∈ E, A v L ∈ T and ¬L(a) ∈ A∗ \ E,
then E := E ∪ {¬L(a)};

v←N∃¬ − rule : if ¬A(a) ∈ E, A v ∃R ∈ T and ∀b ∈ O∗, ¬inv(R, a, b) ∈ A∗ \ E,
then pick a c ∈ O∗ such that E := E ∪ {¬inv(R, a, c)};

v←∃L¬ − rule : if ¬inv(R, a, b) ∈ E, ∃R v L ∈ T and ¬L(a) ∈ A∗ \ E,
then E := E ∪ {¬L(a)};

v←∃∃¬ − rule : if ¬inv(R, a, b) ∈ E, ∃R v ∃S ∈ T and ∀c ∈ O∗,¬inv(S, a, c)

∈ A∗ \ E, then pick a d ∈ O∗ such that E := E ∪ {¬inv(S, a, d)};
v←RE¬ − rule : if ¬inv(R, a, b) ∈ E, R v E ∈ T and ¬neg(E, a, b) ∈ A∗ \ E,

then E := E ∪ {¬neg(E, a, b)};
v←N@¬ − rule : if ¬A(a) ∈ E, A v ¬∃R ∈ T and inv(R, a, c) ∈ A∗ \ E,

for some c ∈ O∗, then E := E ∪ {inv(R, a, b)};
v←∃@¬ − rule : if ¬inv(R, a, b) ∈ E, ∃R v ¬∃S ∈ T and inv(S, a, c) ∈ A∗ \ E,

for some c ∈ O∗, then E := E ∪ {inv(S, a, c)}

Figure 2.6 Secrecy closure rules obtained by inverting rules in Figure 2.3

in E. In both cases, these secrecy closure rules are named by adding the superscript ← in the

name of the corresponding assertion expansion rules.

Rules that specifically deal with BCQs are given in Figure 2.7. Few words of explanation

may be helpful in understanding BCQ-rules. These rules have been designed to protect BCQ’s

in SCQ. Let q ∈ SCQ be a BCQ. To protect q, we use BCQh-rule which “disrupts” each

homomorphism h : G[q] → G[A∗ \ E] and adds to E one of the atoms of q (whose variables

are evaluated under h). Similarly, in the BCQc-rule, we pick an arbitrary clashy mapping

g : G[q]→ G[A∗ \ E] and make it into a non-clashy mapping: This can be done by considering

all the clashy atoms of q under g (A ∈ L[q](v) and ¬A ∈ L[A∗ \ E](g(v)), or P ∈ L[q]((u, v))

and ¬P ∈ L[A∗ \ E](g(u), g(v))) and adding them to E.

The computation of E proceeds in two stages. In the first step, E is initialized as SΣ and

expanded by using secrecy closure rules listed in Figures 2.5 and 2.6. In the second stage, E

is expanded by using BCQh and BCQc-rules. We denote by ΛS the tableau algorithm which

computes the envelope E by using secrecy closure rules listed in Figures 2.5, 2.6 and 2.7 until

www.manaraa.com

25

BCQh − rule : if q ∈ SCQ, and there is a labeled homomorphism

h : V [q] −→c V [A∗ \ E] such that

{A1(h(ζ1)), .., Ak(h(ζk)), P1(h(η1), h(µ1)), ..,

Pm(h(ηm), h(µm))} ∩ E = ∅
then E := E ∪ {Ap(h(ζp))} for some 1 ≤ p ≤ k or

E := E ∪ {Pr(h(ηr), h(µr))} for some 1 ≤ r ≤ m;

BCQc − rule : if q ∈ SCQ, and every f : V [q] −→c V [A∗ \ E] is clashy, then

pick one such clashy mapping g. Then,

• ∀p, 1 ≤ p ≤ k, if ¬Ap(g(ζp)) ∈ A∗ \ E then

E := E ∪ {¬Ap(g(ζp))}, and

• ∀r, 1 ≤ r ≤ m, if ¬Pr(g(ηr), g(µr)) ∈ A∗ \ E then

E := E ∪ {¬Pr(g(ηr), g(µr))}.

q = ∃y1, ., yn[A1(ζ1) ∧ ... ∧Ak(ζk) ∧ P1(η1, µ1) ∧ ∧ Pm(ηm, µm)]

Figure 2.7 Secrecy closure rules for q ∈ SCQ

no more rules are applicable. Due to non-determinism in applying the BCQ-rules, different

executions of ΛS may result different envelopes. Since A∗ is finite, the computation of ΛS

terminates. Let E be the output of ΛS . By the assumption that SΣ ⊆ A∗, and by the BCQh-

and BCQc-rules, it is easy to see that E ⊆ A∗.

Example 2.5.1. Let Σ = 〈A, T 〉 be a DL-LiteR KB, where A = {A(a), B(a), E(a),¬F (a)}

and T = {A v D, A v ¬C, A v ∃P, B v ∃P, ∃P− v ¬C, ∃P− v ¬F, P v Q}. Also let S =

{D(a),∃y1, y2[A(y1)∧P (y1, y2)],∃y1, y2[P (y1, y2)∧C(y2)]} be the secrecy set. Using the asser-

tion expansion rules in Figures 2.1, 2.2 and 2.3, we get A∗ = {A(a), B(a),¬C(a),¬C(b),¬C(c),

D(a), E(a),¬F (a), ¬F (b),¬F (c), P (a, b), P (a, c), Q(a, b), Q(a, c)}. Using the secrecy closure

rules in Figures 2.5, 2.6 and 2.7, we get E = {A(a), D(a),¬C(b)}. Then graphs for A∗ and

A∗ \ E are given in Figure 2.8.

The following results show that no assertion in the envelope E is “logically reachable” from

outside the envelope.

Lemma 2.5.1. Let A∗ be a completed ABox obtained from Σ by first applying the rules in

Figure 2.1, then in Figure 2.2 and then rules in Figure 2.3 as specified in Section 2.3. Also,

www.manaraa.com

26

a

b

c
A,B,¬C
D,E,¬F

¬C,¬F

¬C,¬F

P,Q

P,Q

A∗

a

b

c
B,¬C
E,¬F

¬F

¬C,¬F

P,Q

P,Q

A∗ \ E

Figure 2.8 The graphs of A∗ and A∗ \ E

let E be a set of assertions which is completed by first using rules in Figures 2.5 and 2.6, and

then rules in Figure 2.7. Then, the ABox A∗ \ E is completed.

Proof. We have to show that no rule in Figures 2.1, 2.2 or 2.3 is applicable to A∗ \ E. The

proof is by contradiction according to cases. In each case, there are several sub cases. To avoid

repetition, we give proof for one sub case.

- If vNL-rule is applicable, then there is an assertion A(a) ∈ A∗ \ E and a subsumption

A v L ∈ T such that L(a) /∈ A∗ \E. Since A∗ is completed, L(a) ∈ A∗. Hence, L(a) ∈ E.

This makes the v←NL-rule applicable, contrary to the assumption that E is completed.

- If vN∃-rule is applicable, we have two cases (i) R = P , and (ii) R = P−. We argue the

latter case. By assumption, A(a) ∈ A∗\E, A v ∃P− ∈ T and there is no b ∈ O∗ such that

P (b, a) ∈ A∗ \E. Since A∗ is completed, there is a c ∈ O∗ such that P (c, a) ∈ A∗. Hence

P (c, a) ∈ E. This makes the v←N∃-rule applicable, which contradicts to the assumption

that E is completed.

- If v∃L-rule is applicable, we have two cases (i) R = P , and (ii) R = P−. We consider

the latter case. By assumption, P (b, a) ∈ A∗ \E, ∃P− v L ∈ T and L(a) /∈ A∗ \E. Since

A∗ is completed, L(a) ∈ A∗. Hence, L(a) ∈ E. This makes the v←∃L-rule applicable, a

contradiction.

- If v∃∃-rule is applicable, we have four cases (i) R = P, S = Q, (ii) R = P, S = Q−,

(iii) R = P−, S = Q and (iv) R = P−, S = Q−. We consider case (ii). By assumption,

P (a, b) ∈ A∗ \E, ∃P v ∃Q− ∈ T and for all d ∈ O∗ such that Q(d, a) /∈ A∗ \E. Since A∗

www.manaraa.com

27

is completed, there is a c ∈ O∗ such that Q(c, a) ∈ A∗. Hence Q(c, a) ∈ E. This makes

the v←∃∃-rule applicable, contrary to the assumption that E is completed.

- If vRE-rule is applicable, we have eight cases (i) R = P,E = Q, (ii) R = P,E = Q−,

(iii) R = P−, E = Q, (iv) R = P−, E = Q−, (v) R = P,E = ¬Q, (vi) R = P,E = ¬Q−,

(vii) R = P−, E = ¬Q and (viii) R = P−, E = ¬Q−. We consider case (vii). By

assumption, P (b, a) ∈ A∗ \ E, P− v ¬Q ∈ T and ¬Q(a, b) /∈ A∗ \ E. Since A∗ is

completed, ¬Q(a, b) ∈ A∗. Hence, ¬Q(a, b) ∈ E. This makes the v←RE-rule applicable, a

contradiction.

- If vN@-rule is applicable, we have two cases (i) R = P , and (ii) R = P−. We consider

the latter case. By assumption, A(a) ∈ A∗ \E, A v ¬∃P− ∈ T and ¬P (b, a) /∈ A∗ \E for

some b ∈ O∗. Since A∗ is completed, ¬P (b, a) ∈ A∗. Hence, ¬P (b, a) ∈ E. This makes

the v←N@-rule applicable, a contradiction.

- If v∃@-rule is applicable, we have four cases (i) R = P, S = Q, (ii) R = P, S = Q−, (iii)

R = P−, S = Q and (iv) R = P−, S = Q−. We consider case (iii). By assumption,

P (b, a) ∈ A∗ \ E, ∃P− v ¬∃Q ∈ T and ¬Q(a, c) /∈ A∗ \ E for some c ∈ O∗. Since A∗ is

completed, ¬Q(a, c) ∈ A∗. Hence, ¬Q(a, c) ∈ E. This makes the v←∃@-rule applicable, a

contradiction.

- If vNL¬-rule is applicable, then there is an assertion ¬L(a) ∈ A∗ \ E, A v L ∈ T and

¬A(a) /∈ A∗ \E. Since A∗ is completed, ¬A(a) ∈ A∗. Hence, ¬A(a) ∈ E. This makes the

v←NL¬-rule applicable, a contradiction.

- If vN∃¬-rule is applicable, we have two cases (i) R = P , and (ii) R = P−. We argue the

first case. By assumption, ∀b ∈ O∗, ¬P (a, b) ∈ A∗ \E, A v ∃P ∈ T and ¬A(a) /∈ A∗ \E.

Since A∗ is completed, ¬A(a) ∈ A∗. Hence, ¬A(a) ∈ E. This makes the v←N∃¬-rule

applicable, a contradiction.

- If v∃L¬-rule is applicable, we have two cases (i) R = P , and (ii) R = P−. We argue the

second case. By assumption, ¬L(a) ∈ A∗ \ E, ∃P− v L ∈ T and ¬P (b, a) /∈ A∗ \ E, for

www.manaraa.com

28

some b ∈ O∗. Since A∗ is completed, ¬P (b, a) ∈ A∗. Hence, ¬P (b, a) ∈ E. This makes

the v←∃L¬-rule applicable, a contradiction.

- If v∃∃¬-rule is applicable, we have four cases (i) R = P, S = Q, (ii) R = P, S = Q−,

(iii) R = P−, S = Q and (iv) R = P−, S = Q−. We consider case (i). By assumption,

∀b ∈ O∗ ¬Q(a, b) ∈ A∗ \ E, ∃P v ∃Q ∈ T and ¬P (a, c) /∈ A∗ \ E for some c ∈ O∗.

Since A∗ is completed, ¬P (a, c) ∈ A∗. Hence, ¬P (a, c) ∈ E. This makes the v∃∃¬-rule

applicable, a contradiction.

- If vRE¬-rule is applicable, we have eight cases (i) R = P,E = Q, (ii) R = P,E = Q−,

(iii) R = P−, E = Q, (iv) R = P−, E = Q−, (v) R = P,E = ¬Q, (vi) R = P,E = ¬Q−,

(vii) R = P−, E = ¬Q and (viii) R = P−, E = ¬Q−. We consider case (v). By

assumption, Q(a, b) ∈ A∗ \ E, P v ¬Q ∈ T and ¬P (a, b) /∈ A∗ \ E. Since A∗ is

completed, ¬P (a, b) ∈ A∗. Hence, ¬P (a, b) ∈ E. This makes the v←RE¬-rule applicable, a

contradiction.

- If vN@¬-rule is applicable, we have two cases (i) R = P , and (ii) R = P−. We argue the

second case. By assumption, P (b, a) ∈ A∗\E, A v ¬∃P− ∈ T and ¬A(a) /∈ A∗\E. Since

A∗ is completed, ¬A(a) ∈ A∗. Hence, ¬A(a) ∈ E. This makes the v←N@¬-rule applicable,

a contradiction.

- If v∃@¬-rule is applicable, we have four cases (i) R = P, S = Q, (ii) R = P, S = Q−,

(iii) R = P−, S = Q and (iv) R = P−, S = Q−. We consider case (iv). By assumption,

Q(b, a) ∈ A∗ \ E and ∃P− v ¬∃Q− ∈ T such that ¬P (c, a) /∈ A∗ \ E for some c ∈ O∗.

Since A∗ is completed, ¬P (c, a) ∈ A∗. Hence, ¬P (c, a) ∈ E. This makes the v←∃@¬-rule

applicable, a contradiction. �

The following corollary states, roughly, that the secret BCQs are not logically reachable

from A∗ \ E.

Corollary 2.5.1. Let E′ be any subset of A∗ which is completed with respect to secrecy closure

rules listed in Figure 2.7. Then, for every q ∈ SCQ,

- there is no labeled graph homomorphism h : V [q] −→c V [A∗ \ E′], and

www.manaraa.com

29

- there exists at least one mapping f : V [q] −→c V [A∗ \ E′] which is not clashy.

Proof. Let E′ be completed with respect to secrecy closure rules listed in Figure 2.7. This

implies that for every q ∈ SCQ, no BCQh-rule is applicable to q. Hence, by the conditions of

BCQh-rule, there is no labeled graph homomorphism h : V [q] −→c V [A∗ \ E′], for any q ∈ SCQ.

Similarly, no BCQc-rule is applicable to q. It follows that for each q ∈ SCQ, there exist at least

one mapping f : V [q] −→c V [A∗ \ E′] which is not clashy. �

We now show that the completed set E (an output of ΛS), is in fact an envelope.

Theorem 2.5.1. E is an envelope for S.

Proof. We must show that the set E satisfies the properties of Definition 2.5.1. Clearly,

SΣ ⊆ E. First we show that, for every α ∈ E, A∗ \ E 6|=∗ α. Suppose A∗ \ E |=∗ α, for

some α ∈ E. By Theorem 2.3.2, we have α ∈ (A∗ \ E)∗ and by Lemma 2.5.1, α ∈ A∗ \ E, a

contradiction.

Next we show that for each q ∈ SCQ, A∗ \ E 6|=∗ q and A∗ \ E |6|=∗ q.

- Assume A∗ \E |=∗ q. Then, for every OW-model I = (∆, ·I) of (A∗ \E, T), I∗ |= q where

I∗ = (∆∗ = I∗(O∗), ·I∗). Let J be the canonical model of A∗ \ E. Then, J ∗ = J , and

πJ : V [q] −→c ∆∗ = J (O∗) = O∗ and (J , πJ) |= β, for every β ∈ Atoms(q).

Now, let v ∈ V [q] and A(v) ∈ Atoms(q). Then, (J , πJ) |= A(v) ⇒ πJ (v) ∈ AJY ⇒

A(πJ (v)) ∈ A∗ \ E ⇒ A ∈ L[A∗ \ E](πJ (v)). Similarly, let u, v ∈ V [q] and P (u, v) ∈

Atoms(q). Then, (J , πJ) |= P (u, v) ⇒ (πJ (u), πJ (v)) ∈ PJY ⇒ P ((πJ (u), πJ (v))) ∈

A∗ \ E ⇒ P ∈ L[A∗ \ E]((πJ (u), πJ (v))). It follows that, πJ : V [q] −→c V [A∗ \ E] is a

labeled graph homomorphism contradicting Corollary 2.5.1.

- Assume A∗ \ E | |=∗ q. Then, for every OW-model I = (∆, ·I) of (A∗ \ E, T), I∗| |=

q where I∗ = (∆∗ = I∗(O∗), ·I∗). Let J be the canonical model of A∗ \ E. Then,

J ∗ = J and for each valuation π : V [q] −→c ∆∗ = J (O∗) = O∗, (J , π) |= ¬β, for

some β ∈ Atoms(q). Let k be any such valuation. Then, (J , k) |= ¬A(v) for some

A(v) ∈ Atoms(q) or (J , k) |= ¬P (u, v) for some P (u, v) ∈ Atoms(q). In the first case,

k(v) ∈ AJN ⇒ ¬A(k(v)) ∈ A∗ \ E ⇒ ¬A ∈ L[A∗ \ E](k(v)) and in the second case,

www.manaraa.com

30

(k(u), k(v)) ∈ PJN ⇒ ¬P ((k(u), k(v))) ∈ A∗ \ E ⇒ ¬P ∈ L[A∗ \ E]((k(u), k(v))). Hence,

k : V [q] −→c V [A∗ \ E] is clashy. Since k was arbitrary, it follows that all valuations are

clashy. However, E is completed, so by Corollary 2.5.1 there exist at least one mapping

k : V [q] −→c V [A∗ \ E] which is not clashy. This is a contradiction. Hence, A∗ \ E |6|=∗ q.

�

Ideally, we would like to compute a minimum envelope E which makes query answering as

informative as possible without compromising the secrecy. But, computing minimum envelope

appears to be hard, see Tao et al. (2014). So, our focus now is to compute a minimal envelope

with the property that removing any one of the assertions in E would reveal some of the secrets.

We call such an envelope a tight envelope.

Definition 2.5.2. An envelope E is said to be tight if for every α ∈ E, E \ {α} is not an

envelope.

Next, we observe that an envelope computed using the rules in Figures 2.5, 2.6 and 2.7 need

not be tight.

Example 2.5.2. Consider a DL-LiteR KB, where A = {W (a, b),W (a, c)} and T = {∃W v

A,∃W− v B}. Let S = {∃y, z[A(y)∧W (y, z)∧B(z)]} be the secrecy set. Using the rules in Fig-

ure 1, we compute A∗ = {A(a), B(b), B(c),W (a, b),W (a, c)}. Since ΛS is a non-deterministic

algorithm, ΛS may output different envelopes. For illustration purposes, we considered two

envelopes namely E1 = {A(a),W (a, b),W (a, c)} and E2 = {W (a, b),W (a, c)}. It is easy to see

that E2 is tight, whereas E1 is not.

We now present a naive approach to compute a tight envelope. Given a precomputed A∗

and a secrecy set S = SΣ ∪ SCQ, we can compute an envelope E of S as explained in the

beginning of this section. An assertion α ∈ E \ S is said to be redundant if E \ {α} is an

envelope, i.e., ((A∗ \E)∪{α})∗∩ (E\{α}) = ∅. To compute a tight envelope, for each β ∈ E\S

we check whether β is redundant in which case it is moved from E to A∗ \ E. Otherwise, β

remains in E. Updating the resulting ABox A∗ \ E could possibly take exponential time.

www.manaraa.com

31

a

b

c
B,¬C
E,¬F

¬F

¬C,¬F

P,Q

P,Q

A∗ \ E

y1

y2

E

Q

q1

y1

y2

A

Q

q2

y1

y2 F

Q

q3

Figure 2.9 The graphs of A∗ \ E and queries

2.6 Answering Queries

At this point we assume that A∗ and E have been precomputed. From an algorithmic point

of view, answering queries may be based on checking membership in the set A∗ \E or searching

for specific graph structures in the graph G[A∗ \ E]. Suppose that the agent poses query q of

the form C(a) or E(a, b). Then, the reasoner checks for the membership of q and ¬q in the set

A∗ \E. If q ∈ A∗ \E, then the reasoner should answer “Yes” by Theorem 2.4.1. If ¬q ∈ A∗ \E,

then the reasoner should answer “No” by Theorem 2.4.2. If neither q nor ¬q is in A∗ \E, then

the reasoner should answer “Unknown”.

Now suppose that the agent poses BCQ q. Then, the reasoner considers the mappings

V [q] −→c V [A∗\E]. If there exists a labeled homomorphism h : V [q] −→c V [A∗\E], then the reasoner

should answer “Yes” by Theorem 2.4.1. If every such mapping is clashy, then the reasoner

should answer “No”, see Theorem 2.4.2. Otherwise, the reasoner should answer “Unknown”.

Example 2.6.1. We use the KB, the secrecy set S and the envelope E considered in Example

2.5.1. Answers for the BCQs q1, q2 and q3 whose query graphs are in Figure 2.9, are computed

in the following based on A∗ \ E.

First let us consider the BCQ q1 = ∃y1, y2[E(y1) ∧ Q(y1, y2)]. Since there exists a homo-

morphism from G[q1] to G[A∗ \ E], namely, y1 7→ a, y2 7→ b and since L[q1](y1) ⊆ L[A∗ \

E](a), L[q1](y1, y2) ⊆ L[A∗ \ E](a, b), L[q1](y2) ⊆ L[A∗ \ E](b), the answer to q1 is “Yes”.

Actually, there are two labeled homomorphisms from G[q1] to G[A∗ \ E], the other one being,

y1 7→ a, y2 7→ c.

www.manaraa.com

32

Next, q2 = ∃y1, y2[A(y1) ∧ Q(y1, y2)]. Since there is no labeled homomorphism and there exist

non-clashy mappings from G[q2] to G[A∗\E], e.g., y1 7→ a, y2 7→ b, answer to q2 is “Unknown”.

Finally, consider the BCQ q3 = ∃y1, y2[Q(y1, y2)∧F (y2)]. It is easy to see that all the mappings

from G[q3] to G[A∗ \ E] are clashy. Hence, answer for the BCQ q3 is “No”.

2.7 Complexities of computing A∗, E and Query Answering

Recall that answering conjunctive queries in DL-LiteR is in LogSpace with respect to data

complexity (i.e., as a function of the size of the ABox, keeping the TBox and query fixed), and

NP-complete with respect to combined complexity, (i.e., as a function of both the size of the

KB and the query) see Calvanese et al. (2007); Ortiz and Šimkus (2012). Here we provide a

brief discussion of the computational complexities of various algorithms given in this chapter.

a) Computation of the assertional closureA∗: Starting with the input ABoxA, the algorithm

expands it using the assertion expansion rules given in Figures 2.1, 2.2 and 2.3 in that

order. Clearly, A∗ can be computed in exponential time as a function of the size of the

input KB.

b) Computation of the envelope E: Initializing the set E as SΣ , the algorithm first expands

E using the secrecy closure rules given in Figures 2.5 and 2.6. Further the algorithm

expands the resulting set E using the rules in Figure 8 for the BCQs in SCQ until no more

application of rules in Figures 2.5, 2.6 and 2.7 are possible. The most time-consuming

step in the computation of E is the application of the BCQh-rule which may require

an enumeration of all graph labeled homomorphisms h : V [q] −→c V [A∗ \ E]. This may

incur substantial computational cost; in fact enumerating all graph homomorphisms h :

V [q] −→c V [A∗ \ E] requires time exponential in the input size |V [q]| + |V [A∗ \ E]| as the

corresponding counting problem is #P -complete, see Dyer and Greenhill (2000).

It is important to note that since our main interest is in query-answering, the calculations (a)

and (b) need to be performed just once before the query-answer phase begins.

www.manaraa.com

33

c) Computation of answers to queries: It is obvious that the cost of computing an answer

to a BCQ is higher than the cost of answering an instance query. By Hidden Name

Assumption, the querying agent can ask instance queries about assertions in the set A∗0

whose size is of polynomial in the input KB, see Section 2.5. Hence, answering instance

queries can be done in polynomial time as a function of the size of the input KB.

For answering a BCQ q, the reasoner R computes a function which returns “Yes”, “No”

or “Unknown” in the following way: First R checks if there is a labeled homomorphism

h : V [q] −→c V [A∗ \ E] in which case R answers “Yes”; if no such homomorphism exists,

R checks if there is a non-clashy mapping k : V [q] −→c V [A∗ \ E] in which case R answers

“Unknown”; otherwise, R outputs “No”.

It is known that the problem of existence of a labeled homomorphism h : V [q] −→c V [A∗\E]

is NP − complete and the problem of existence of a non-clashy mapping k : V [q] −→c

V [A∗ \ E] clearly belongs to NP . It is easy to see that these tests can be performed

deterministically in |V [A∗ \E]|O(|V [q]|) time. Observe that this upper bound is polynomial

in the KB size (when the query is fixed) and it is exponential in the query size (when KB

is fixed).

2.8 Conclusions

In this chapter we have studied the problem of secrecy-preserving query answering over

acyclic DL-LiteR KBs. We have extended the conceptual logic-based framework for secrecy-

preserving reasoning which was introduced by Tao et al., see Tao et al. (2014), so as to allow

BCQs. As the OWA underlies the foundational aspects of KBs, to show that the reasoner is

sound and complete we used the semantics based on Kleene’s 3-valued logic, see Avron (1991);

Tao et al. (2014). We provide syntactic characterizations for entailment and disentailment of

BCQs in terms of properties of mappings (Section 2.4).

www.manaraa.com

34

CHAPTER 3. SECRECY-PRESERVING QUERY ANSWERING IN ELH

KNOWLEDGE BASES

3.1 Introduction

In literature, most of the approaches dealing with “information protection” are based on

access control mechanisms. For semantic web applications, the authors of Kagal et al. (2003)

have proposed policy languages to represent obligation and delegation policies based on access

control approach. Biskup et al. in Biskup and Weibert (2008); Biskup and Tadros (2012) stud-

ied secrecy in incomplete databases using controlled query evaluation (CQE). Since description

logics (DLs) underlie web ontology languages (OWLs), recently researchers have shown an

interest in studying secrecy-preserving reasoning in DL knowledge bases (KBs).

In Bao et al. (2007); Tao et al. (2010, 2014), the authors have developed a secrecy framework

that attempts to satisfy the following competing goals: (a) it protects secret information and

(b) queries are answered as informatively as possible (subject to satisfying property (a)). The

notion of an envelope to hide secret information against logical inference was first defined

and used in Tao et al. (2010). Further, in Tao et al. (2014), Tao et al., introduced a more

elaborate conceptual framework for secrecy-preserving query answering (SPQA) under Open

World Assumption (OWA) with multiple querying agents. This approach is based on OWA and

(so far) it has been restricted to instance-checking queries. Specifically, in Bao et al. (2007);

Tao et al. (2010, 2014) the main idea was to utilize the secret information within the reasoning

process, but then answering “Unknown” whenever the answer is truly unknown or in case the

true answer could compromise confidentiality.

The motivation for this work is that popular ontologies like GALEN, GO and SNOMED

that can be viewed as KBs defined in languages belong to EL family. In addition, a number

www.manaraa.com

35

of studies were reported in conjunctive query answering, reasoning and classifications in ELH

and its extensions, see Bienvenu et al. (2013); Delaitre and Kazakov (2009).

In this chapter we extend the work of Tao et al., reported in Tao et al. (2010), to the ELH

language. In addition to the extension, we make several new contributions. First, we study

secrecy in the context of assertions as well as general concept inclusions (GCIs). To the best of

our knowledge, secrecy-preserving reasoning for GCIs has not been studied before. As a first

step in constructing SPQA system, we design two tableau algorithms to compute finite sets T ∗

and thenA∗, of consequences of the TBox T ∪R∗ and the KB 〈A, T ∗,R∗〉 respectively, restricted

to individuals and concepts that actually occur in the given KB Σ = 〈A, T ,R〉 and an extra

“auxiliary” set of concepts defined over the signature of Σ. The approach to constructing SPQA

system presented in this chapter is quite different from Tao et al. (2010). In Tao et al. (2010), the

KB and envelope are expanded with new queries. This makes the subsequent query answering

step more and more complicated. In general, the sets of all assertional consequences and GCI

consequences of a given Σ = 〈A, T ,R〉 may be infinite. By forcing the tableau algorithms

to compute the consequences (both assertions and GCIs) of KB restricted to individuals and

subconcepts that occur in a given prescribed set, we obtain finite A∗ and T ∗ that in fact can

be computed efficiently in polynomial time. These sets, once computed, remain fixed and are

not modified. The two tableau algorithms are sound and complete under the restrictions stated

above, see section 3.3. Since the sets A∗ and T ∗ do not contain all the consequences of the KB,

in order to answer user queries we have designed recursive algorithms which break the queries

into smaller assertions or GCIs all the way until the information in the sets A∗ and T ∗ can be

used. In effect, we have split the task of query answering into two parts: in the first part we

compute all the consequences of Σ restricted to concepts and individuals that occur in Σ, in

the second part we use a recursive algorithm to evaluate more complex queries with the base

case that has been computed in the first part.

In more detail, starting from the secrecy sets SA (of assertions) and ST (of GCIs), we

compute finite sets of assertions and GCIs, viz., the envelopes EA ⊆ A∗ of SA and ET ⊆ T ∗ of

ST respectively. These envelopes are computed by two tableau algorithms based on the idea

of inverting the expansion rules of two tableau algorithms listed in Figures 3.1 and 3.2. The

www.manaraa.com

36

idea behind the envelope concept is that no expression in the envelope can be logically deduced

from information outside the envelope. Once such envelopes are computed, the answers to the

queries are censored whenever the queries belong to the envelopes. Since, generally, an envelope

for a given secrecy set is not unique, the developer can force the algorithm to output a specific

envelope from the available choices satisfying the needs of application domain, company policy,

social obligations and user preferences.

Next, we discuss query answering procedures which allow us answer queries without reveal-

ing secrets. Usually in SPQA framework queries are answered by checking their membership

(a) in A∗ \ EA if the query is an assertion; and (b) in T ∗ \ ET if the query is a GCI. Since A∗

and T ∗ do not contain all the statements entailed by Σ, we need to extend the query answering

procedure from just membership checking. Towards that end we designed two recursive algo-

rithms to answer more complicated assertion and GCI queries. To answer an assertion query

q, the algorithm first checks if q ∈ A∗ \ EA in which case the answer is “Yes”; otherwise, the

given query is broken into subqueries based on the constructors, and the algorithm is applied

recursively on the subqueries, see section 3.5. This query answering procedure runs in poly-

nomial time in the size of the KB and the query q. Similar approach is used to answer GCI

queries.

3.2 Syntax and Semantics

A vocabulary of ELH is a triple < NO, NC , NR > of countably infinite, pairwise disjoint

sets. The elements of NO are called object (or individual) names, the elements of NC are called

concept names and the elements of NR are called role names. The set of ELH concepts is

denoted by C and is defined by the following rules

C ::= A | > | C uD | ∃r.C

where A ∈ NC , r ∈ NR, > denotes the “top concept”, and C,D ∈ C. Assertions are expressions

of the form C(a) or r(a, b), general concept inclusions (GCIs) are expressions of the form C v D

and role inclusions are expressions of the form r v s where C,D ∈ C, r, s ∈ NR and a, b ∈ NO.

The semantics of ELH concepts is specified, as usual, by an interpretation I =
〈
∆, ·I

〉
where ∆

www.manaraa.com

37

is the domain of the interpretation, and ·I is an interpretation function mapping each a ∈ NO

to an element aI ∈ ∆, each A ∈ NC to a subset AI ⊆ ∆, and each r ∈ NR to a binary relation

rI ⊆ ∆×∆. The interpretation function ·I is extended inductively to all ELH concepts in the

usual manner:

>I = ∆; (C uD)I = CI ∩DI ;

(∃r.C)I = {d ∈ ∆ | ∃e ∈ CI : (d, e) ∈ rI}.

An Abox A is a finite, non-empty set of assertions. A TBox T is a finite set of GCIs and an

RBox R is a finite set of role inclusions. An ELH KB is a triple Σ = 〈A, T ,R〉 where A is

an ABox, T is a TBox and R is an RBox. Let I =
〈
∆, ·I

〉
be an interpretation, C,D ∈ C,

r, s ∈ NR and a, b ∈ NO. We say that I satisfies C(a), r(a, b), C v D or r v s, notation

I |= C(a), I |= r(a, b), I |= C v D or I |= r v s if, respectively, aI ∈ CI , (aI , bI) ∈ rI ,

CI ⊆ DI or rI ⊆ sI . I is a model of Σ, notation I |= Σ, if I satisfies all the assertions in

A, all the GCIs in T and all the role inclusions in R. Let α be an assertion, a GCI or a role

inclusion. We say that Σ entails α, notation Σ |= α, if all models of Σ satisfy α.

3.3 Computation of A∗ and T ∗

Let Σ = 〈A, T ,R〉 be an ELH KB. In this section, we give two tableau algorithms that

compute A∗, a set of assertional consequence of Σ, and T ∗ a set of GCI consequences of Σ,

both restricted to concepts that occur in Σ. We assume that all RBoxes are acyclic. Before

computing T ∗ and A∗, we compute R∗ = R+ ∪ R◦, where R+ is the transitive closure of R

with respect to role inclusion and R◦ = {r v r | r occurs in Σ}. As an example, consider

a KB Σ = 〈A, T ,R〉 where ABox A = {A(a), ∃m.B(c)}, TBox T = {A v ∃n.D} and RBox

R = {r v s, p v q, u v v, s v u}. Then, R∗ = R ∪ {s v v, r v u, r v v} ∪ {m v m,n v

n, r v r, s v s, p v p, q v q, u v u, v v v}. R∗ is easily computed in polynomial time and we

omit the details.

Computation of T ∗: Denote by NΣ the set of all concept names and role names occurring

in Σ and let S be a finite set of concepts over the symbol set NΣ . Let CΣ,S be the set of

all subconcepts of concepts that occur in either S or Σ. Given Σ and CΣ,S, we describe a

www.manaraa.com

38

Tv − rule : if C v D ∈ T ∗, D v E ∈ T and C v E /∈ T ∗,
then T ∗ := T ∗ ∪ {C v E};

T−u − rule : if C v D u E ∈ T ∗, and C v D /∈ T ∗ or C v E /∈ T ∗,
then T ∗ := T ∗ ∪ {C v D,C v E};

T+
u − rule : if C v D, C v E ∈ T ∗, D u E ∈ CΣ,S and C v D u E /∈ T ∗,

then T ∗ := T ∗ ∪ {C v D u E};
T+
H − rule : if C v ∃r.D, D v E ∈ T ∗, r v s ∈ R∗, ∃s.E ∈ CΣ,S and C v ∃s.E /∈ T ∗,

then T ∗ := T ∗ ∪ {C v ∃s.E}.

Figure 3.1 TBox Tableau expansion rules

procedure that computes T ∗, a set of GCI consequences of the given KB Σ (restricted to

concepts in CΣ,S). That is, T ∗ = {C v D | C,D ∈ CΣ,S and Σ |= C v D}. This procedure is

similar to the calculus presented in Kazakov et al. (2014) (designed for EL+).

Let AXT = {C v C,C v >,> v > | C ∈ CΣ,S}. T ∗ is initialized as AXT and then

expanded by exhaustively applying expansion rules listed in Figure 3.1. The Tv-rule derives

a GCI based on transitivity of subsumption. T−u -rule derives new GCIs by decomposing con-

junction concepts into its two conjuncts. The T+
u -rule is just the “opposite” of the T−u -rule.

Finally, T+
H -rule derives GCIs based on concept and role inclusions.

A TBox is completed if no expansion rule in Figure 3.1 is applicable to it. We denote by

ΛT the algorithm which, given Σ, CΣ,S and R∗, non-deterministically applies expansion rules

in Figure 3.1 until no further applications are possible. Since ΛT has been restricted to derive

GCIs whose left and right hand side concept expressions occur in CΣ,S, the size of the T ∗ is

at most a polynomial in the size of its input. Hence, the running time of ΛT is polynomial in

| Σ | + | CΣ,S |. The correctness of ΛT can be shown by proving soundness and completeness

of ΛT . The soundness proof is obvious.

Example 3.3.1. Let Σ = 〈A, T ,R〉 be a ELH KB, where A = {C(a), r(b, a),∃u.A(d)}, T =

{A v B,C v D u E,F v ∃u.B} and R = {u v v}. Then, R∗ = {r v r, u v u, v v v, u v v}.

Thus, applying rules in Figure 3.1 to T , we get {> v >, A v >, C v C,∃u.A v ∃u.A,∃u.A v

∃u.B, C v D,C v D u E} ⊆ T ∗. �

www.manaraa.com

39

To prove the completeness of ΛT , we define the canonical interpretation J =
〈
∆, ·J

〉
for a

completed TBox T ∗ and an RBox R∗ as follows:

∆ = {wC | C ∈ CΣ,S};

>J = ∆;

for A ∈ NC , A
J = {wC | C v A ∈ T ∗};

for r ∈ NR, r
J = {(wC , wD) | C v ∃r.D ∈ T ∗} ∪⋃

uvr∈R∗ u
J .

The interpretation function ·J is extended to concept expressions as usual. To prove that J is

a model of T ∗, we need the following definition and technical lemma.

Definition 3.3.1. Let J be the canonical interpretation and u a role name that occurs in Σ.

u is said to be minimal with respect to (wG, wH) ∈ ∆×∆ if

1) (wG, wH) ∈ uJ and

2) there is no v that occurs in R such that v 6= u, (wG, wH) ∈ vJ and v v u ∈ R∗.

Lemma 3.3.1. Let B, C ∈ CΣ,S. Then,

(a) wC ∈ CJ .

(b) wC ∈ BJ if and only if C v B ∈ T ∗.

Proof. (a) By induction on the structure of C.

- C = A ∈ NC or C = >, the claim follows from the definition of J .

- C = DuE. Then, DuE v DuE ∈ T ∗ and by the T−u -rule, we have DuE v D,DuE v

E ∈ T ∗, whence wDuE ∈ DJ and wDuE ∈ EJ , by inductive hypothesis. By the semantics

of u, wDuE ∈ DJ ∩ EJ = (D u E)J .

- C = ∃r.D. Then, ∃r.D v ∃r.D ∈ T ∗ and by the definition of J , (w∃r.D, wD) ∈ rJ ; also,

by the inductive hypothesis, wD ∈ DJ . By the semantics of ∃, w∃r.D ∈ (∃r.D)J .

(b) (⇐) By induction on the structure of B.

www.manaraa.com

40

- B ∈ NC . Then, C v B ∈ T ∗ whence wC ∈ BJ , by the definition of J .

- B = >, the claim follows from the definition of J .

- B = D u E. Then, C v D u E ∈ T ∗. By T−u -rule, C v D, C v E ∈ T ∗ implies

wC ∈ DJ and wC ∈ EJ , and by the inductive hypothesis whence wC ∈ (D u E)J = BJ ,

by the semantics of u.

- B = ∃r.D. We assume, C v ∃r.D ∈ T ∗. Since C, D ∈ CΣ,S, we have wC , wD ∈ ∆. By

the definition of J , (wC , wD) ∈ rJ . By part (a), wD ∈ DJ hence wC ∈ (∃r.D)J = BJ ,

by the semantics of ∃.

(⇒) By induction on the structure of B.

- When B ∈ NC , the claim follows from the definition of J .

- B = >, the claim follows from the definition of AXT .

- B = D u E. Then, wC ∈ (D u E)J ⇒ wC ∈ DJ and wC ∈ EJ ⇒ C v D,C v E ∈ T ∗,

by inductive hypothesis. Since DuE occurs in CΣ,S, by the T+
u -rule, we have C v DuE =

B ∈ T ∗.

- B = ∃r.D. Then, wC ∈ (∃r.D)J ⇒ there is an element wE ∈ ∆ such that (wC , wE) ∈

rJ , wE ∈ DJ . By inductive hypothesis, E v D ∈ T ∗. Now, we have two subcases

depending on a “manner” in which (wC , wE) entered rJ .

- If r is minimal with respect to (wC , wE), then, by the definition of J and Definition

3.3.1, C v ∃r.E ∈ T ∗. Since r v r ∈ R∗, by the T+
H-rule, we have C v ∃r.D ∈ T ∗.

Hence, C v B ∈ T ∗.

- If r is not minimal, then (wC , wE) ∈ uJ , u 6= r and u v r ∈ R∗ for some u

that occurs in R. If u is minimal with respect to (wC , wE), then by previous case

C v ∃u.E ∈ T ∗ and by the T+
H-rule, we have C v ∃r.D ∈ T ∗. Hence, C v B ∈ T ∗.

If u is not minimal with respect to (wC , wE), since RBox R is acyclic, there exists a

chain v v v1 v v2...... v vk v u in R such that v is minimal with respect to (wC , wE).

www.manaraa.com

41

Since R∗ is the transitive closure of R, v v r ∈ R∗. Again by the previous case,

C v ∃v.E ∈ T ∗. By T+
H-rule, we have C v ∃r.D ∈ T ∗. Hence, C v B ∈ T ∗. �

The following lemma claims that J satisfies T ∗ and R∗. The proof is a consequence of

Lemma 3.3.1

Lemma 3.3.2. J |= T ∗ ∪R∗ .

The completeness of ΛT now follows by an easy argument.

Theorem 3.3.1. Let Σ be a ELH KB and let T ∗ be the completed TBox. For any C, D

∈ CΣ,S, if Σ |= C v D then C v D ∈ T ∗.

Proof. Suppose C v D /∈ T ∗, i.e., by part (b) of Lemma 3.3.1, wC /∈ DJ . On the other hand

by part (a) of Lemma 3.3.1, wC ∈ CJ and this implies that J 6|= C v D. Since by Lemma

3.3.2, J |= T ∗, and since T ⊆ T ∗, we obtain Σ 6|= C v D. �

Computation of A∗: Let Σ = 〈A, T ,R〉 be an ELH KB, R∗ be defined as at the beginning

of this section and T ∗ be the completed TBox as computed previously. Also, let OΣ be the set

of individual names that occur in Σ and define AXA = {>(a) | a ∈ OΣ}.

We outline the procedure that computes A∗, the set of assertional consequences of Σ∗

where Σ∗ = 〈A, T ∗,R∗〉, restricted to the concepts and role names that occur in CΣ,S and Σ

respectively. That is

A∗ = {C(a) | C ∈ CΣ,S and Σ∗ |= C(a)} ∪ {r(a, b) | r occurs in Σ and Σ∗ |= r(a, b)}.

A∗ is initialized as A ∪ AXA and is expanded by exhaustively applying rules listed in Figure

3.2. A−u -rule decomposes conjunctions, and the Av-rule derives assertions based on the GCIs

present in T ∗. To build new concept assertions whose concept expressions already occur in

CΣ,S, we use the A+
u and A+

∃ -rules. Similarly, the A+
∃H -rule derives concept assertions based

on role inclusions. It is important to note that this procedure does not introduce any fresh

individual names into A∗. Thus some assertions of the form ∃r.C(a) may not have “syntactic

witnesses”. Finally, the AH -rule derives role assertions based on role inclusions.

www.manaraa.com

42

A−u − rule : if C uD(a) ∈ A∗, and C(a) /∈ A∗ or D(a) /∈ A∗,
then A∗ := A∗ ∪ {C(a), D(a)};

A+
u − rule : if C(a), D(a) ∈ A∗, C uD ∈ CΣ,S and C uD(a) /∈ A∗,

then A∗ := A∗ ∪ {C uD(a)};
A+
∃ − rule : if r(a, b), C(b) ∈ A∗, ∃r.C ∈ CΣ,S and ∃r.C(a) /∈ A∗,

then A∗ := A∗ ∪ {∃r.C(a)};
Av − rule : if C(a) ∈ A∗, C v D ∈ T ∗, and D(a) /∈ A∗,

then A∗ := A∗ ∪ {D(a)};
A+
∃H − rule : if ∃r.C(a) ∈ A∗, r v s ∈ R∗, C v D ∈ T ∗, ∃s.D ∈ CΣ,S and ∃s.D(a) /∈ A∗,

then A∗ := A∗ ∪ {∃s.D(a)};
AH − rule : if r(a, b) ∈ A∗, r v s ∈ R∗, and s(a, b) /∈ A∗,

then A∗ := A∗ ∪ {s(a, b)}.

Figure 3.2 ABox Tableau expansion rules.

An ABox is completed if no expansion rule in Figure 3.2 is applicable to it. We denote by

ΛA the algorithm which, given A, R∗, T ∗ and CΣ,S, non-deterministic-ally applies expansion

rules in Figure 3.2 until no further applications are possible. Since ΛA derives only assertions

involving concept expressions that occur in CΣ,S, it is easy to see that the running time of ΛA

is polynomial in | Σ | + | CΣ,S |.

Example 3.3.2. (Example 3.3.1 cont.) Recall that Σ = 〈A, T ,R〉 be a ELH be the given KB,

R∗ the computed RBox and T ∗ the completed TBox. Then, by applying rules in Figure 3.2 to

A and using T ∗ and R∗ we get,

A∗ = {>(a),>(b),>(d),∃u.A(d),∃u.B(d), C(a),

r(b, a), D(a), E(a), D u E(a)}. �

The correctness of ΛA can be shown by proving its soundness and completeness. The sound-

ness is obvious. To prove the completeness of ΛA, we first define the canonical interpretation

K =
〈
∆, ·K

〉
for a completed ABox A∗. The definition of K is similar to the definition of canon-

www.manaraa.com

43

ical model IK presented in Lutz et al. (2008). Define the witness set, W = {wC | C ∈ CΣ,S}.

∆ = OΣ ∪W;

aK = a,where a ∈ OΣ ;

>K = ∆;

for each A ∈ NC ,

AK = {a ∈ OΣ | A(a) ∈ A∗} ∪ {wC ∈ W | C v A ∈ T ∗}; for each r ∈ NR,

rK = {(a, b) ∈ OΣ ×OΣ | r(a, b) ∈ A∗} ∪ {(a,wC) ∈ OΣ ×W | ∃r.C(a) ∈ A∗}

∪ {(wC , wD) ∈ W ×W | C v ∃r.D ∈ T ∗} ∪
⋃
{uK | u v r ∈ R∗}.

K is extended to compound concepts in the usual way. We argue that K is a model of A∗, T ∗

and R∗.

Lemma 3.3.3. Let a, b ∈ OΣ and suppose that the role name r occurs in Σ. If (a, b) ∈ rK,

then r(a, b) ∈ A∗.

Proof. Assume the hypotheses. We prove the claim by induction on how r(a, b) has been

generated by ΛA. The base case, when r(a, b) ∈ A, is trivial. Let (a, b) ∈ uK with u v r ∈ R∗.

Then by induction hypothesis, u(a, b) ∈ A∗ and by the AH-rule, we have r(a, b) ∈ A∗. �

We state the following lemma whose proof is similar to the proof of Lemma 3.3.1.

Lemma 3.3.4. Let B, C ∈ CΣ,S. Then,

(a) wC ∈ CK.

(b) wC ∈ BK if and only if C v B ∈ T ∗.

The following definition is similar to Definition 3.3.1, but is based on the canonical inter-

pretation of the ABox A∗.

Definition 3.3.2. Let K be the canonical interpretation, and u a role name that occurs in Σ.

u is said to be minimal with respect to (a, b) if

1) (a, b) ∈ uK and

www.manaraa.com

44

2) there is no role name, v that occurs in R such that v 6= u, (a, b) ∈ vK and v v u ∈ R∗.

Lemma 3.3.5. Let a ∈ OΣ and B ∈ CΣ,S. If a ∈ BK, then B(a) ∈ A∗.

Proof. By induction on the structure of B.

- When B ∈ NC , the claim follows directly from the definition of K.

- When B = >, the claim follows from the definition of AXA.

- B = CuD. Then, a ∈ (CuD)K ⇒ a ∈ CK and a ∈ DK ⇒ C(a), D(a) ∈ A∗, by inductive

hypothesis. Since C uD occurs in CΣ,S, by the A+
u -rule, we have C uD(a) = B(a) ∈ A∗.

- B = ∃r.C. Then, a ∈ (∃r.C)K implies that there is an element b ∈ ∆ such that (a, b) ∈ rK

and b ∈ CK. There are two cases.

- b ∈ OΣ. Since r occurs in Σ and C occurs in CΣ,S, by Lemma 3.3.3, we have

r(a, b) ∈ A∗ and by the inductive hypothesis, C(b) ∈ A∗. Since ∃r.C occurs in CΣ,S,

by the A+
∃ -rule, we have ∃r.C(a) = B(a) ∈ A∗.

- b = wD ∈ W for some D ∈ CΣ,S. Then, we have (a,wD) ∈ rK and wD ∈ CK. By

part (b) of Lemma 3.3.1, D v C ∈ T ∗. Now, we have two subcases depending on a

manner in which (a,wD) entered rK.

- If r is minimal with respect to (a,wD), then, by the definition of K and Definition

3.3.2, ∃r.D(a) ∈ A∗. Since r v r ∈ R∗, by the A+
∃H-rule, we have ∃r.C(a) ∈ A∗,

i.e., B(a) ∈ A∗.

- If r is not minimal, then (a,wD) ∈ uK, u 6= r and u v r ∈ R∗ for some u

that occurs in R. If u is minimal with respect to (a,wD), then by previous case

∃u.D(a) ∈ A∗. By A+
∃H-rule, we have ∃r.C(a) ∈ A∗. Hence, B(a) ∈ A∗. If

u is not minimal with respect to (a,wD), since RBox R is acyclic, there exists

a chain v v v1 v v2...... v vk v u in R such that v is minimal with respect

to (a,wE). Since R∗ is the transitive closure of R, v v r ∈ R∗. Again by

the previous case, ∃v.D(a) ∈ A∗. By A+
∃H-rule, we have ∃r.C(a) ∈ A∗, i.e.,

B(a) ∈ A∗. �

www.manaraa.com

45

Lemma 3.3.6. If B(a) ∈ A∗, then a ∈ BK.

Proof. Again we use induction on the structure of B.

- B ∈ NC . Then, B(a) ∈ A∗ ⇒ a ∈ BK, by the definition of K.

- B = >. The claim follows from the definition of K.

- B = C u D. Then, C u D(a) ∈ A∗. By A−u -rule, we have C(a), D(a) ∈ A∗ ⇒ a ∈

CK and a ∈ DK ⇒ a ∈ (C uD)K, by inductive hypothesis.

- B = ∃r.D. Then, ∃r.D(a) ∈ A∗. By the definition of K, (a,wD) ∈ rK. By Lemma 3.3.1,

wD ∈ DK. Hence, by the semantics of ∃, a ∈ (∃r.D)K = BK. �

In the following we prove that K satisfies A∗, T ∗ and R∗.

Lemma 3.3.7. K |= A∗ ∪ T ∗ ∪R∗ .

Proof. It follows immediately from the definition of K that K |= R∗. Next, we show that K

satisfies A∗. C(a) ∈ A∗; then, by Lemma 3.3.6, a ∈ CK, i.e., K |= C(a). For r(a, b) ∈ A∗,

K |= r(a, b), by the definition of K. Hence K |= A∗.

Now, we show that K satisfies T ∗. Let F v G ∈ T ∗ and a ∈ FK. We have two cases.

- a ∈ OΣ. Then, by Lemma 3.3.5, F (a) ∈ A∗. Since A∗ is completed, by the Av-rule, we

get G(a) ∈ A∗. By Lemma 3.3.6, a ∈ GK. Hence, K |= F v G.

- a = wC ∈ W for some C ∈ CΣ,S. This implies, by the definition of K, that C v F ∈ T ∗.

Since T ∗ is completed, we have C v G ∈ T ∗. Again by the definition of K, a ∈ GK which

implies K |= F v G. �

We are ready to prove the completeness of ΛA.

Theorem 3.3.2. Let Σ∗ = 〈A, T ∗,R∗〉 be a ELH KB as defined in the beginning of this

subsection and A∗ the completed ABox. Suppose that B ∈ CΣ,S and r occurs in Σ. Then, for

any a, b ∈ OΣ,

- Σ∗ |= B(a) ⇒ B(a) ∈ A∗.

www.manaraa.com

46

- Σ∗ |= r(a, b) ⇒ r(a, b) ∈ A∗.

Proof. Since A ⊆ A∗, by Lemma 3.3.7, we have K |= Σ∗. We show that K 6|= B(a) and

K 6|= r(a, b). Assume that B(a) /∈ A∗. Then, a /∈ BK by Lemma 3.3.5 and hence K 6|= B(a).

Now, assume that r(a, b) /∈ A∗. Then, (a, b) /∈ rK by Lemma 3.3.3 and hence K 6|= r(a, b). �

3.4 Secrecy-Preserving Reasoning

Let Σ = 〈A, T ,R〉 be an ELH KB. Also let SA ⊆ A∗ \ AXA and ST ⊆ T ∗ \ AXT be

the “secrecy sets”. Given Σ, SA and ST , the objective is to answer assertion or GCI queries

while preserving secrecy. Our approach is to compute two sets EA and ET , where SA ⊆ EA ⊆

A∗ \AXA and ST ⊆ ET ⊆ T ∗ \AXT , called the secrecy envelopes for SA and ST respectively,

so that protecting EA and ET , the querying agent cannot logically infer any assertion in SA

and any GCI in ST , see Tao et al. (2010) where the DL language is just EL and secrecy is

restricted to membership assertions. Similarly, Tao et al. (2014) presents a general framework

for secrecy preserving reasoning.

The role of OWA in answering the queries is the following: When answering a query with

“Unknown”, the querying agent should not be able to distinguish between the case that the

answer to the query is truly unknown to the KB reasoner and the case that the answer is being

protected for reasons of secrecy. We envision a situation in which once the ABox A∗ and TBox

T ∗ are computed, a reasoner R is associated with it. R is designed to answer queries as follows:

If a query cannot be inferred from Σ, the answer is “Unknown”. If it can be inferred and it is

not in EA ∪ET , the answer is “Yes”; otherwise, the answer is “Unknown”. Note that since the

syntax of ELH does not include negation, an ELH KB cannot entail a negative query.

We make the following assumptions about the capabilities of the querying agent:

(a) does not have direct access to the KB Σ, but is aware of the underlying vocabulary,

(b) can ask queries in the form of assertions or GCIs, and

(c) cannot ask queries in the form of role inclusions.

www.manaraa.com

47

Inv-A−u − rule : if {C(a), D(a)} ∩ EA 6= ∅ and C uD(a) ∈ A∗ \ EA,
then EA := EA ∪ {C uD(a)};

Inv-A+
u − rule : if C uD(a) ∈ EA, C uD ∈ CΣ,S and {C(a), D(a)} ⊆ A∗ \ EA,

then EA := EA ∪ {C(a)} or EA := EA ∪ {D(a)};
Inv-A+

∃ − rule : if ∃r.C(a) ∈ EA, {r(a, b), C(b)} ⊆ A∗ \ EA and ∃r.C ∈ CΣ,S,
then EA := EA ∪ {r(a, b)} or EA := EA ∪ {C(b)};

Inv-Av − rule : if D(a) ∈ EA, C v D ∈ T ∗, and C(a) ∈ A∗ \ EA,
then EA := EA ∪ {C(a)};

Inv-A+
∃H − rule : if ∃s.D(a) ∈ EA, C v D ∈ T ∗, r v s ∈ R∗, ∃s.D ∈ CΣ,S and

∃r.C(a) ∈ A∗ \ EA, then EA := EA ∪ {∃r.C(a)};
Inv-AH − rule : if s(a, b) ∈ EA, r v s ∈ R∗, and r(a, b) ∈ A∗ \ EA,

then EA := EA ∪ {r(a, b)}.

Figure 3.3 Inverted ABox Tableau expansion rules

We formally define the notion of an envelope in the following.

Definition 3.4.1. Let Σ = 〈A, T ,R〉 be a ELH KB, and let SA and ST be two finite secrecy

sets. The secrecy envelopes EA and ET of SA and ST respectively, have the following properties:

- SA ⊆ EA ⊆ A∗ \AXA,

- ST ⊆ ET ⊆ T ∗ \AXT ,

- for every α ∈ ET , T ∗ \ ET 6|= α, and

- for every α ∈ EA, A∗ \ EA 6|= α.

The intuition for the above definition is that no information in EA and ET can be inferred

from the corresponding sets A∗ \ EA and T ∗ \ ET . To compute envelopes, we use the idea of

inverting the rules of Figures 3.1 and 3.2 (see Tao et al. (2010), where this approach was first

utilized for membership assertions). Induced by the TBox and ABox expansion rules in Figures

3.1 and 3.2, we define the corresponding “inverted” ABox and TBox expansion rules in Figures

3.3 and 3.4, respectively. These inverted expansion rules are denoted by prefixing Inv- to the

name of the corresponding expansion rules.

www.manaraa.com

48

From now on, we assume that A∗, T ∗ and R∗ have been computed and readily available for

computing the envelopes. The computation of envelopes proceeds in two steps. In the first step,

we compute EA by initializing it to SA and then expanding it using the inverted expansion rules

listed in Figure 3.3 until no further applications are possible. We denote by ΛSA the algorithm

which computes the set EA. Due to non-determinism in applying the rules Inv-A+
u and Inv-A+

∃ ,

different executions of ΛSA may result in different outputs. Since A∗ is finite, the computation

of ΛSA terminates. Let EA be an output of ΛSA. Since the size of A∗ is polynomial in |Σ|+ |CΣ,S|,

and each application of inverted expansion rule moves some assertions from A∗ into EA, the

size of EA is at most the size of A∗. Therefore ΛSA takes polynomial time in | Σ | + | CΣ,S | to

compute the envelope EA.

In step two, we compute ET independent of EA by initializing it to ST and then expanding

it using the inverted TBox expansion rules listed in Figure 3.4 until no further applications of

rules are possible. We denote by ΛST the algorithm which computes the set ET . Similarly to

ΛSA, due to non-determinism in applying Inv-T+
u and Inv-T+

H -rules, different executions of ΛST

may result in different outputs. Since T ∗ is finite, the computation of ΛST terminates. Let ET

be an output of ΛST . Since the size of T ∗ is polynomial in the size of Σ and CΣ,S, and each

application of inverted TBox expansion rule moves some GCIs from T ∗ into ET , the size of ET

is at most the size of T ∗. Therefore ΛST takes polynomial time in | Σ | + | CΣ,S | to compute

the envelope ET .

Example 3.4.1. (Example 3.3.2 cont.) Recall that A∗ and T ∗ are the completed ABox and

TBox respectively. Let SA = {D uE(a)} and ST = {C v D uE} be the secrecy sets. Then, by

using rules in Figure 3.3, we get the envelope for SA,

EA = SA ∪ {D(a)}.

Similarly, using the rules in Figure 3.4, we get the envelope for ST ,

ET = ST ∪ {C v D}. �

Before proving the main results on envelopes, we prove the following auxiliary lemmas.

First, we show that no assertions in EA is “logically reachable” from any assertion in A∗ \EA.

www.manaraa.com

49

Inv-Tv − rule : if C v E ∈ ET , D v E ∈ T and C v D ∈ T ∗ \ ET ,
then ET := ET ∪ {C v D};

Inv-T−u − rule : if {C v D,C v E} ∩ ET 6= ∅ and C v D u E ∈ T ∗ \ ET ,
then ET := ET ∪ {C v D u E};

Inv-T+
u − rule : if C v D u E ∈ ET , D u E ∈ CΣ,S and {C v D,C v E} ⊆ T ∗ \ ET ,

then ET := ET ∪ {C v D} or ET := ET ∪ {C v E};
Inv-T+

H − rule : if C v ∃s.E ∈ ET , r v s ∈ R∗,∃s.E ∈ CΣ,S and

{C v ∃r.D,D v E} ⊆ T ∗ \ ET ,
then ET := ET ∪ {C v ∃r.D} or ET := ET ∪ {D v E}.

Figure 3.4 Inverted TBox Tableau expansion rules.

Lemma 3.4.1. Let A∗ be a completed ABox obtained from A by applying the tableau expansion

rules in Figure 3.2. Also, let EA be a set of assertions which is completed by applying the

tableau expansion rules in Figure 3.3 starting with the secrecy set SA. Then, the ABox A∗ \EA

is completed.

Proof. We have to show that no rule in Figure 3.2 is applicable to A∗ \ EA. The proof is by

contradiction according to cases: assuming that a rule in Figure 3.2 is applicable and showing

that a some inverse rule is applicable.

- If A−u -rule is applicable, then there is an assertion C u D(a) ∈ A∗ \ EA such that

C(a) /∈ A∗ \ EA or D(a) /∈ A∗ \ EA. Since A∗ is completed, {C(a), D(a)} ⊆ A∗. Hence,

{C(a), D(a)} ∩ EA 6= ∅. This makes the Inv-A−u -rule applicable.

- If A+
u -rule is applicable, then there are assertions C(a), D(a) ∈ A∗ \ EA such that C u

D ∈ CΣ,S and C u D(a) /∈ A∗ \ EA. Since A∗ is completed, C u D(a) ∈ A∗. Hence,

C uD(a) ∈ EA. This makes the Inv-A+
u -rule applicable.

- If A+
∃ -rule is applicable, then there are assertions r(a, b), C(b) ∈ A∗ \EA such that ∃r.C ∈

CΣ,S and ∃r.C(a) /∈ A∗\EA. Since A∗ is completed, ∃r.C(a) ∈ A∗. Hence, ∃r.C(a) ∈ EA.

This makes the Inv-A+
∃ -rule applicable.

www.manaraa.com

50

- If Av-rule is applicable, then there is an assertion C(a) ∈ A∗\EA and a GCI C v D ∈ T ∗

such that D(a) /∈ A∗ \ EA. Since A∗ is completed, D(a) ∈ A∗. Hence, D(a) ∈ EA. This

makes the Inv-Av-rule applicable.

- If A+
∃H-rule is applicable, then there is an assertion ∃r.C(a) ∈ A∗ \ EA, a GCI C v D ∈

T ∗, a role inclusion r v s ∈ R∗ such that ∃s.D ∈ CΣ,S and ∃s.D(a) /∈ A∗ \ EA. Since

A∗ is completed, ∃s.D(a) ∈ A∗. Hence, ∃s.D(a) ∈ EA. This makes the Inv-A+
∃H-rule

applicable.

- If AH-rule is applicable, then there is an assertion r(a, b) ∈ A∗ \ EA and a role inclusion

r v s ∈ R∗ such that s(a, b) /∈ A∗ \ EA. Since A∗ is completed, s(a, b) ∈ A∗. Hence,

s(a, b) ∈ EA. This makes the Inv-AH-rule applicable. �

The next lemma is an analog of Lemma 4.4.1 for T ∗. Its proof is similar.

Lemma 3.4.2. Let T ∗ be a completed TBox obtained from Σ and CΣ,S by applying the tableau

expansion rules in Figure 3.1. Also, let ET be a set of GCIs which is completed by using

tableau expansion rules in Figure 3.4 starting with the secrecy set ST . Then, the TBox T ∗ \ET

is completed.

We now show that the completed sets EA and ET are in fact envelopes.

Theorem 3.4.1. EA and ET are envelopes for SA and ST respectively .

Proof. We must show that the sets EA and ET satisfy the four properties of Definition 3.4.1.

Properties 1 and 2 are obvious. To prove property 3, suppose A∗ \ EA |= α, for some α ∈ EA.

This means, by Theorem 3.3.2, that α ∈ (A∗ \ EA)∗ and since, by Lemma 3.4.1, A∗ \ EA is

completed, (A∗ \ EA)∗ = A∗ \ EA, whence α ∈ A∗ \ EA. This is a contradiction. Proof of

property 4 is similar, using Theorem 3.3.1 and Lemma 3.4.2 instead of Theorem 3.3.2 and

Lemma 3.4.1, respectively. �

To answer queries as informatively as possible without revealing the secret information, we

should aim to make the size of the envelope E as small as possible. From now on, we focus on

computing a tight envelope E which is defined in Definition 2.5.2. We now show by an example,

that the envelopes computed by using the rules in Figures 3.3 and 3.4 are not necessarily tight.

www.manaraa.com

51

EvalA(q)

1: case q ∈ A∗ \ EA
2: return “Yes”

3: case q = C uD(a)

4: if EvalA(C(a)) = “Yes” and EvalA(D(a)) = “Yes” then

5: return “Yes”

6: else

7: return “Unknown”

8: case q = ∃r.C(a)

9: if for some d ∈ OΣ [r(a, d) ∈ A∗ \ EA and EvalA(C(d)) =“Yes”] then

10: return “Yes”

11: else

12: if for some E ∈ CΣ,S [E v C ∈ T ∗ and EvalA(∃r.E(a)) = “Yes”] then

13: return “Yes”

14: else

15: if for some s ∈ RR [s v r ∈ R∗ and EvalA(∃s.C(a)) = “Yes”]

then

16: return “Yes”

17: else

18: return “Unknown”

Figure 3.5 Query answering algorithm for assertional queries

Example 3.4.2. Let Σ = 〈A, T ,R〉 be a ELH KB, where A = {C(a), r(b, a)}, T = {A v

B,C v D u E,C v D u F} and R = ∅. Also let SA = {D u E(a), D u F (a)} and ST = {C v

D u E,C v D u F} be the secrecy sets.

Since ΛSA is non-deterministic, we may get different envelopes as an output. Some of the

envelopes are

1 EA = SA ∪ {D(a), F (a)} – not tight,

2 EA = SA ∪ {E(a), F (a)} – tight and

3 EA = SA ∪ {D(a)} – minimum and tight.

Since ΛST is non-deterministic, we may get different envelopes as an output depending on the

choice made in the application of Inv-T+
u -rule when computing the envelopes. The envelopes

are

1 ET = ST ∪ {C v D,C v F} – not tight,

www.manaraa.com

52

2 ET = ST ∪ {C v E,C v F} – tight and

3 ET = ST ∪ {C v D} – minimum and tight. �

By using the procedure presented in Section 2.5, tight envelopes for the secrecy sets SA and

ST can be computed in polynomial time.

3.5 Query Answering

The recursive procedures given in Figures 3.5 and 3.6 take an input q (as a query) and

output “Yes” or “Unknown”. In Section 3.4, we have described briefly how the reasoner R

responds to queries. In this section we provide a few more details. Here we assume that A∗,

EA, T ∗, ET and R∗ have all been precomputed and are considered to be globally accessible.

Define the set RR = {r | r is a role name that occurs in R}. The recursive procedures for

answering the assertional queries and the GCI queries are given in Figure 3.5 and Figure 3.6

respectively. In Lines 1 and 2 of Figure 3.5, we check the membership of q in A∗ \ EA and

answer “Yes” if q ∈ A∗ \EA. From line 3 onwards we consider several cases in which we break

the query q into subqueries based on the constructors defined in the language ELH and apply

the procedure recursively.

The following theorem proves the correctness of the algorithm.

Theorem 3.5.1. Let Σ = 〈A, T ,R〉 be an ELH KB. Let A∗ be an completed ABox, EA an

envelope of the secrecy set SA and q an assertional query. Then,

- Soundness: EvalA(q) outputs “Yes” ⇒ A∗ \ EA |= q

- Completeness: EvalA(q) outputs “Unknown” ⇒ A∗ \ EA 6|= q

Proof. We first consider the soundness part. Let I be an arbitrary model of Σ and therefore

I satisfies A∗ \ EA, T ∗ and R∗, and let q be a query. We argue inductively by cases:

- q ∈ A∗ \ EA. Since ΛA is sound, we have I |= q.

- q = C uD(a) 6∈ A∗ \ EA. Then, EvalA(C(a)) = EvalA(D(a)) =“Yes” and by inductive

hypothesis, I |= C(a) and I |= D(a). Hence, a ∈ CI∩DI = (CuD)I , i.e., I |= CuD(a).

www.manaraa.com

53

- q = ∃r.C(a) /∈ A∗ \ EA. There are several subcases:

- Let for some d ∈ OΣ [r(a, d) ∈ A∗\EA and EvalA(C(d)) =“Yes”]. Then by the first

case I |= r(a, d) and by inductive hypothesis I |= C(d). This immediately proves

I |= ∃r.C(a).

- Let for some E ∈ CΣ,S [E v C ∈ T ∗ and EvalA(∃r.E(a)) = “Yes”]. Then I |= E v

C, and by inductive hypothesis, I |= ∃r.E(a), whence I |= ∃r.C(a).

- Let for some s ∈ RR [s v r ∈ R∗ and EvalA(∃s.C(a)) = “Yes”]. Then I |= s v r,

and by inductive hypothesis, I |= ∃s.C(a) implying I |= ∃r.C(a).

We prove the completeness part using a contrapositive argument. Assume that A∗ \EA |= q.

We have to show that EvalA(q) = “Yes”. Let K be the canonical interpretation as defined in

section 3.3. By Lemma 3.3.7, K satisfies A∗, T ∗ and R∗ and hence K satisfies A∗ \ EA and

q. We argue that: if K |= q then EvalA(q) = “Yes”, by induction on the structure of q. There

are two cases. If q ∈ A∗ \ EA, then the claim follows immediately. Next, consider the case

q 6∈ A∗ \ EA. There are several cases:

- q = CuD(a). To answer this query the algorithm computes EvalA(C(a)) and EvalA(D(a)).

Now, the assumption K |= CuD(a) implies K |= C(a) and K |= D(a) which, by inductive

hypothesis, implies that EvalA(C(a)) = EvalA(D(a)) = “Yes”. Hence, by Lines 4 and 5

in Figure 3.5, EvalA(C uD(a))=“Yes”.

- q = ∃r.C(a). By the assumption, K |= ∃r.C(a). This implies, for some b ∈ ∆ [(a, b) ∈

rK and b ∈ CK]. There are two subcases:

- r is minimal with respect to (a, b). Again there are two subcases:

- b ∈ OΣ. Then, K |= r(a, b) and K |= C(b). By the first case r(a, b) ∈ A∗ \ EA

and by inductive hypothesis EvalA(C(b)) = “Yes”. Hence, by Lines 9 and 10 in

Figure 3.5, EvalA (∃r.C(a))=“Yes”.

- b = wD ∈ W for some D ∈ CΣ,S. Then, K |= ∃r.D(a) and by part (b) of Lemma

3.3.4, D v C ∈ T ∗. By inductive hypothesis EvalA(∃r.D(a)) = “Yes”. Hence,

by Lines 12 and 13 in Figure 3.5, EvalA(∃r.C(a)) =“Yes”.

www.manaraa.com

54

- r is not minimal with respect to (a, b). Since RBox R is acyclic, there exists a chain

s v v1 v v2...... v vk v u in R such that s is minimal with respect to (a, b). Since

R∗ is the transitive closure of R, s v r ∈ R∗. Again there are two cases:

- b ∈ OΣ. Then, by Definition 3.3.2 and the definition of K, K |= s(a, b).

Also, K |= s v r and K |= C(b). By the first subcase of the previous case

EvalA(∃s.C(a)) = “Yes”. Hence, by Lines 15 and 16 in Figure 3.5, EvalA

(∃r.C(a))=“Yes”.

- b = wD ∈ W for some D ∈ CΣ,S. Then, by Definition 3.3.2 and the definition of

K, K |= ∃s.D(a). Also, K |= s v r and by part (b) of Lemma 3.3.4, D v C ∈ T ∗.

By the second subcase of the previous case EvalA(∃s.C(a)) = “Yes”. Hence, by

Lines 15 and 16 in Figure 3.5, EvalA(∃r.C(a)) =“Yes”. �

Since the algorithm given in Figure 3.5 runs in polynomial time in the size of A∗ \EA and q,

the assertional query answering can be done in polynomial time as a function of | A∗ | + | q |.

Next, suppose that the querying agent poses a GCI query q. In response, the reasoner R

invokes the query answering algorithm EvalT(q) given in Figure 3.6 and returns the answer as

output. We prove in the following the correctness of the recursive algorithm given in Figure

3.6.

Theorem 3.5.2. Let Σ = 〈A, T ,R〉 be an ELH KB. Let T ∗ be an completed TBox, ET an

envelope of the secrecy set ST and q a GCI query. Then,

- Soundness: EvalT(q) outputs “Yes” ⇒ T ∗ \ ET |= q

- Completeness: EvalT(q) outputs “Unknown” ⇒ T ∗ \ ET 6|= q

Proof. We first consider the soundness part. Let I be an arbitrary model of Σ and therefore

I satisfies T ∗ \ ET and R∗, and let q be a GCI query. We argue inductively by cases:

- q ∈ T ∗ \ ET . Since ΛT is sound, we have I |= q.

- q = C v D u E 6∈ T ∗ \ ET . Then, EvalT(C v D) = EvalT(C v E) =“Yes” and by

inductive hypothesis, I |= C v D and I |= C v E. This implies, CI ⊆ DI and CI ⊆ EI .

Hence, CI ⊆ (DI ∩ EI) = (D u E)I , i.e., I |= C v D u E.

www.manaraa.com

55

EvalT(q)

1: case q ∈ T ∗ \ ET
2: return “Yes”

3: case q = C v D u E
4: if EvalT(C v D) =“Yes” and EvalT(C v E) =“Yes” then

5: return “Yes”

6: else

7: return “Unknown”

8: case q = C v ∃r.D
9: if for some E ∈ CΣ,S [E v D ∈ T ∗ and EvalT(C v ∃r.E) =“Yes”] then

10: return “Yes”

11: else

12: if for some s ∈ RR [s v r ∈ R∗ and EvalT(C v ∃s.D) =“Yes”] then

13: return “Yes”

14: else

15: return “Unknown”

Figure 3.6 Query answering algorithm for GCI queries

- q = C v ∃r.D /∈ T ∗ \ ET . There are two subcases:

- Let for some E ∈ CΣ,S [E v D ∈ T ∗ and EvalT(C v ∃r.E) =“Yes”]. Then by

the first case I |= E v D, and by inductive hypothesis, I |= C v ∃r.E, whence

I |= C v ∃r.D.

- Let for some s ∈ RR [s v r ∈ R∗ and EvalT(C v ∃s.D) = “Yes”]. Then I |= s v r,

and by inductive hypothesis, I |= C v ∃s.D implying I |= C v ∃r.D.

We prove the completeness part using a contrapositive argument. Assume that T ∗ \ ET |= q.

We have to show that EvalT(q) =“Yes”. Let J be the canonical interpretation as defined in

section 3.3. By Lemma 3.3.2, J satisfies T ∗ and R∗. Hence J satisfies T ∗ \ ET and q. We

argue by induction on the structure of q that, if J |= q then EvalT(q) = “Yes”. The basic case

is, q ∈ T ∗ \ET . Then, by Lines 1 and 2 in Figure 3.6, the claim is obvious. Next, consider the

case q 6∈ T ∗ \ ET . There are several cases:

- q = C v DuE. The algorithm in Figure 3.6 computes EvalT(C v D) and EvalT(C v E).

Now, the assumption J |= C v D u E implies J |= C v D and J |= C v E which, by

inductive hypothesis, implies that EvalT(C v D) = EvalT(C v E) = “Yes”. Hence, by

www.manaraa.com

56

Lines 4 and 5 in Figure 3.6, EvalT(C v D u E) = “Yes”.

- q = C v ∃r.D. By the assumption, J |= C v ∃r.D. This implies, C, D ∈ CΣ,S and

∃r.D 6∈ CΣ,S .

- J |= C v ∃r.E1, E1 v E2, ...Ek−1 v Ek, Ek v D where ∃r.E1, E2, Ek ∈ CΣ,S

and C v ∃r.E1, E1 v E2, ...Ek−1 v Ek, Ek v D ∈ T ∗ \ ET . Since, by Lemma 3.4.2,

T ∗ \ET is completed, E1 v D ∈ T ∗ \ET . Also, by the basic step, EvalT(C v ∃r.E1)

= “Yes”. Hence, by Lines 9 and 10, EvalT(C v ∃r.D) = “Yes”.

- J |= C v ∃s.D, s v v1, v1 v v2,vk v r where ∃s.D ∈ CΣ,S, s, v1, v2, ...vk ∈ RR,

C v ∃s.D ∈ T ∗ and s v v1, v1 v v2,vk v r ∈ R∗. Then, s v r ∈ R∗ and by the

basic step, EvalT(C v ∃s.D) = “Yes”. Hence, by Lines 15 and 16, EvalT(C v ∃r.D)

= “Yes”. �

Since the algorithm runs in polynomial time in the size of T ∗ \ ET and q, the GCI query

answering can be done in polynomial time as a function of | T ∗ | + | q |.

Example 3.5.1. (Example 3.4.1 cont.) Recall that A∗ and T ∗ are the completed ABox and

TBox respectively. Also, recall that EA = SA ∪ {D(a)} and ET = ST ∪ {C v D} are the the

envelopes for SA and ST respectively.

Suppose that the querying agent asks the assertional queries CuE(a), ∃r.C(b), ∃r.E(b) and

D(a). Using the algorithm in Figure 3.5, we get the following answers:

q EvalA(q) Remarks

C u E(a) Yes by Lines 4, 5

∃r.E(b) Yes by Lines 12, 13

D(a) Unknown by Line 18

Next, suppose that the querying agent asks the GCI queries C v C u E, ∃r.C v ∃r.E and

C v D. Using the algorithm in Figure 3.6, we get the following answers:

q EvalT(q) Remarks

C v C u E Yes by Lines 4, 5

∃r.C v ∃r.E Yes by Lines 9, 10

C v D Unknown by Line 15 �

www.manaraa.com

57

3.6 Conclusions

The main contribution of this chapter is that we allow secrets as well as queries to be of

two types: (a) local type, assertions about specific individuals (e.g., C(a) or r(a, b)), as well as

(b) global type, GCIs (e.g., C v D) which specify hierarchical inclusion relationships between

concepts. Another contribution is in the way that we compute the consequences and preserve

secrecy while answering queries. We break the process into two parts, first one precomputes

all the consequences for concepts and individuals that occur in the given KB. For this we use

four separate (but related) tableau procedures. As for the actual query answering, we parse the

query all the way to constituents that occur in the previously precomputed set of consequences.

Then, the queries are answered based on the membership of the constituents of the query in

A∗ \ EA and T ∗ \ ET . All the algorithms are efficient and can be implemented in polynomial

time.

www.manaraa.com

58

CHAPTER 4. KEEPING SECRETS IN MODALIZED DL

KNOWLEDGE BASES

4.1 Introduction

Recently, Tao et al., in Tao et al. (2014) have developed a conceptual framework to study

secrecy-preserving reasoning and query answering in DL knowledge bases (KBs) under Open

World Assumptions (OWA). The approach uses the notion of an envelope to hide secret infor-

mation against logical inference and it was first defined and used in Tao et al. (2010). This

approach is based on the assumption that the information contained in a KB is incomplete

(by OWA) and (so far) it has been restricted to very simple DLs and simple query languages.

Specifically, in Tao et al. (2010, 2014); Krishnasamy Sivaprakasam and Slutzki (2016) the main

idea was to utilize the secret information within the reasoning process, but then answering “Un-

known” whenever the answer is truly unknown or in case the true answer could compromise

confidentiality.

The modalized DLs are DLs with modal operators. Lutz et al., in Lutz et al. (2001)

presented a tableau decision algorithm for modalized ALC. In Tao et al. (2012), the authors

studied satisfiability reasoning problem in acyclic modalized ALC KBs. Also in many reported

research articles regarding privacy, modal logic is used to study privacy related reasoning tasks,

see Barth and Mitchell (2005); Halpern and O’Neill (2005); Jafari et al. (2011). Specifically

in Halpern and O’Neill (2005), the authors showed that the modal logic of knowledge for

multiagent systems provides a fundamental framework for reasoning about anonymity. This

framework was extended in Tsukada et al. (2009) to reasoning about privacy. In an attempt to

reduce the complexity of reasoning in modal logic, Hemaspaandra in Hemaspaandra (2000) had

considered several propositional modal logic languages with one modal operator. Motivated by

www.manaraa.com

59

these works, in this chapter we study secrecy-preserving query answering problem for ELH♦

KBs where ELH♦ is the description logic ELH augmented with a modal operator ♦.

Given an ELH♦ KB Σ = 〈A, T ,R〉, a first step in constructing secrecy-preserving reasoning

system, we use a tableau algorithm to compute a finite rooted labeled tree T. The labeling set

of the root node of this T is A∗ which contains a set of consequences of the KB Σ, restricted

to concepts that actually occur in Σ and an extra “auxiliary” set of concepts defined over the

signature of Σ. Since the computed tree does not contain all the consequences of the KB, in

order to answer user queries we have designed a recursive algorithm which breaks the queries

into smaller assertions all the way until the information in T can be used. In effect, we have split

the task of query answering into two parts: in the first part we compute all the consequences of

Σ restricted to concepts and individuals that occur in Σ, in the second part we use a recursive

algorithm to evaluate more complex queries with the base case that has been computed in the

first part.

To protect the secret information in the secrecy set S, we compute an envelope E which

is a function that assigns a set of assertions to each node in T. This envelope is computed

by a another tableau algorithm based on the idea of inverting the local and global expansion

rules given in the first tableau algorithm. The idea behind the envelope concept is that no

expression in the envelope can be logically deduced from information outside the envelope.

Once such envelope is computed, the answers to the queries are censored whenever the queries

belong to the envelope. Since, generally, an envelope for a given secrecy set is not unique, the

developer has some freedom to output a envelope (from the available choices) satisfying the

needs of application domain, company policy, social obligations or user preferences.

Next, we discuss a query answering procedure which allows us to answer queries without

revealing secrets. The queries are answered based on the information available in the secrecy-

preserving tree obtained from the tree T and the envelope E, see Section 4.4. This tree, once

computed, remains fixed. Usually in secrecy-preserving query answering framework queries are

answered by checking their membership in a previously computed set, see Tao et al. (2010,

2014); Krishnasamy Sivaprakasam and Slutzki (2016). Since the secrecy-preserving tree does

not contain all the statements entailed by Σ, we need to extend the query answering procedure

www.manaraa.com

60

from just membership checking. Towards that end we designed a recursive algorithm to answer

more complicated queries. To answer a query q, the algorithm first checks if q is a member of

the labeling set of the root node of secrecy-preserving tree, in which case the answer is “Yes”;

otherwise, the given query is broken into subqueries based on the logical constructors, and the

algorithm is applied recursively on the subqueries, see Section 4.5.

4.2 Syntax and Semantics of ELH♦

A vocabulary of ELH♦ is a triple < NO, NC , NR > of countably infinite, pairwise disjoint

sets. The elements of NO are called object (or individual) names, the elements of NC are called

concept names and the elements of NR are called role names. The set of ELH♦ concepts is

denoted by C and is defined by the following rules

C ::= A | > | C uD | ∃r.C | ♦C

where A ∈ NC , r ∈ NR, > denotes the “top concept”, C,D ∈ C and ♦C denotes the modal

constructor, read as “diamond C”. Assertions are expressions of the form C(a) or r(a, b),

general concept inclusions (GCIs) are expressions of the form C v D and role inclusions are

expressions of the form r v s where C,D ∈ C, r, s ∈ NR and a, b ∈ NO.

The semantics of ELH♦ concepts is defined by using Kripke structures Blackburn et al.

(2002); Kripke (1963). A Kripke structure is a tuple M = 〈S, π, E〉 where S is a set of states,

E ⊆ S×S is the accessibility relation, and π interprets the syntax of ELH♦ at each state s ∈ S.

The intuitive meaning of (s, t) ∈ E is that state t would be considered as a possible state from

the state s in M. Further, we denote by E(s) the set {t | (s, t) ∈ E} of the successors of the

state s.

All the concepts and role names will be interpreted in a common (i.e., state-independent)

non-empty domain which we denote by ∆, see Lutz et al. (2001); Tao et al. (2012). The

interpretation of concepts and role names is defined inductively as follows: for all a ∈ NO,

www.manaraa.com

61

A ∈ NC , r ∈ NR, C,D ∈ C and for all s ∈ S,

>π(s) = ∆; aπ(s) ∈ ∆;

Aπ(s) ⊆ ∆; rπ(s) ⊆ ∆×∆;

(C uD)π(s) = Cπ(s) ∩Dπ(s);

(♦C)π(s) =
⋃
t∈E(s)C

π(t);

(∃r.C)π(s) = {d ∈ ∆ | ∃e ∈ Cπ(s) : (d, e) ∈ rπ(s)}.

An ABox A is a finite, non-empty set of assertions, a TBox T is a finite set of GCIs and

an RBox R is a finite set of role inclusions. An ELH♦ KB is a triple Σ = 〈A, T ,R〉 where A

is an ABox, T is a TBox and R is an RBox.

Let M = 〈S, π, E〉 be a Kripke structure, s ∈ S, C,D ∈ C, r, t ∈ NR and a, b ∈ NO. We say

that (M, s) satisfies C(a), r(a, b), C v D or r v t, notation (M, s) |= C(a), (M, s) |= r(a, b),

(M, s) |= C v D or (M, s) |= r v t if, respectively, aπ(s) ∈ Cπ(s), (aπ(s), bπ(s)) ∈ rπ(s),

Cπ(s) ⊆ Dπ(s) or rπ(s) ⊆ tπ(s). (M, s) satisfies Σ, notation (M, s) |= Σ, if (M, s) satisfies all

the assertions in A, all the GCIs in T and all the role inclusions in R. M satisfies Σ, or M is

a model of Σ, if there exists a s ∈ S such that (M, s) |= Σ and for all t ∈ S, (M, t) |= T ∪ R.

Let α be an assertion, a GCI or a role inclusion. We say that Σ entails α, notation Σ |= α, if

for all Kripke structures M satisfying Σ and for all states s of M, (M, s) |= Σ ⇒ (M, s) |= α.

4.3 Computation of a Model for ELH♦ KB Σ and A∗

Before presenting an algorithm to compute a model for the given KB, we describe a pre-

processing procedure to eliminate occurrences of > from the KB. In the first step we apply the

following rules exhaustively to Σ3 = 〈A3, T3,R〉 until no further applications are possible to

get a new KB Σ2 = 〈A2, T2,R〉. We initialize A2 as A3 and T2 as T3.

- If > v C ∈ T2, then remove it from T2 and replace C by > throughout Σ2;

- If ♦> occurs in Σ2, then replace ♦> by > throughout Σ2 and

- If C u > or > u C occurs in Σ2, then replace it by C throughout Σ2.

www.manaraa.com

62

Let O′ be the set of individual names occurring in Σ2. In the second step we apply the

following rules exhaustively to Σ2 until no further application is possible. Let Σ1 = 〈A1, T1,R〉

be the KB obtained from Σ2. In this step, we initialize A1 as A2 and T1 as T2.

- If >(a) ∈ A1, then remove >(a) from A1;

- If ∃r.>(a) ∈ A1 and ∀ d ∈ O′, r(a, d) 6∈ A1, then add r(a, b) to A1 where b is a fresh

individual name and O′ = O′ ∪ {b}; Remove ∃r.>(a) from A1;

- If C v ∃r.> ∈ T1, C(a) ∈ A1 and ∀ d ∈ O′, r(a, d) 6∈ A1, then add r(a, b) to A1 where b

is a fresh individual name and O′ = O′ ∪ {b};

- If C v > ∈ T1, then remove C v > from T1, and

- If ∃r.> v C ∈ T1 and r(a, b) ∈ A1 and C(a) 6∈ A1, then add C(a) to A1.

Finally, as a last step, we remove all the subsumptions of the form C v ∃r.> and ∃r.> v C

from Σ1. Here C, D ∈ C, r ∈ NR and a, b ∈ NO. Let Σ = 〈A, T ,R〉 be the output of this

diminution procedure. It is easy to see that Σ can be computed using the rules from Σ3 in the

polynomial time in | Σ3 |. From the rules, it is easy to see that Σ3 |= α if and only if Σ |= α

where α is an assertion, a GCI or a role inclusion. Hereafter in this chapter, we assume that

all KBs are free from > symbol.

Denote by NΣ the set of all concept names and role names occurring in Σ and let S be

a finite set of concepts over the symbol set NΣ
1. Let CΣ,S be the set of all subconcepts of

concepts that occur in S or Σ and define

A∗ = {C(a) | C ∈ CΣ,S and Σ |= C(a)} ∪ {r(a, b) | Σ |= r(a, b)}.

We use OΣ to denote the set of individual names that occur in Σ, and define the witness set

W = {w r
C | r is a role name that occurs in Σ and C ∈ CΣ,S}. Define O∗ = OΣ ∪W. Given Σ

and CΣ,S , we outline a procedure that computes a tree called a constraint tree over Σ, see Lutz

et al. (2001); Horrocks et al. (2006); Tao et al. (2012) for similar constructions. A constraint

tree over Σ is a rooted tree T = 〈V, k0,E,L〉 where V is a set of nodes, k0 ∈ V is the root

1A technicality; S will be used in Section 4.4 in the context of secrecy-preserving reasoning.

www.manaraa.com

63

u+ − rule : if C(a), D(a) ∈ L(i), C uD ∈ CΣ,S , and

C uD(a) /∈ L(i), then L(i) := L(i) ∪ {C uD(a)};
u− − rule : if C uD(a) ∈ L(i), and C(a) /∈ L(i) or D(a) /∈ L(i),

then L(i) := L(i) ∪ {C(a), D(a)};
∃+ − rule : if r(a, b), C(b) ∈ L(i), ∃r.C ∈ CΣ,S and

∃r.C(a) /∈ L(i), then L(i) := L(i) ∪ {∃r.C(a)};
∃− − rule : if ∃r.C(a) ∈ L(i), and ∀b ∈ O∗, {r(a, b), C(b)} 6⊆ L(i),

then L(i) := L(i) ∪ {r(a,w r
C), C(w r

C)}, where w r
C ∈ W;

v −rule : if C(a) ∈ L(i), C v D ∈ T , and D(a) /∈ L(i),

then L(i) := L(i) ∪ {D(a)};
H − rule : if r(a, b) ∈ L(i), r v s ∈ R, and s(a, b) /∈ L(i),

then L(i) := L(i) ∪ {s(a, b)};

Figure 4.1 Local expansion rules

node of T, E is a set of directed edges and L is a function that labels each node with a set of

assertions which are obtained by applying the expansion rules specified below. The procedure

builds T starting from the root node k0 whose labeling set L(k0) is initialized as the ABox A.

Further, T is grown by recursively applying the expansion rules in Figures 4.1 and 4.2. T is

said to be completed if no expansion rule in Figures 4.1 or 4.2 is applicable to it. The procedure

is designed to output a completed constraint tree T = 〈V, k0,E,L〉 with L(k0) = A∗. For the

purpose of query answering, T is used as a “good approximation” of a (Kripke) model of the

given KB, see Section 4.5.

In more detail, there are two kinds of expansion rules: (a) local expansion rules and (b)

global expansion rules. Local expansion rules are given in Figure 4.1 and generate new assertions

within a single labeling set. The u−-rule decomposes conjunctions, and ∃−-rule decomposes

existential restriction assertions of the form ∃r.C(a) by introducing a corresponding witness

w r
C from the set W. The v-rule derives new assertions based on the GCIs present in T . To

construct concept assertions whose associated concept expressions already belong to CΣ,S , we

use the u+ and ∃+-rules. Finally, the H-rule derives role assertions based on role inclusions

in R. The global expansion rules are given in Figure 4.2. The ♦−-rule generates new nodes

www.manaraa.com

64

♦− − rule : if there is a node i with ♦C(a) ∈ L(i) and

i has no successor j with C(a) ∈ L(j),

then add a new successor k of i with L(k) := {C(a)};
♦+ − rule : if there is a node i with C(a) ∈ L(i), ♦C ∈ CΣ,S

and i has a parent j with ♦C(a) 6∈ L(j),

then L(j) := L(j) ∪ {♦C(a)}.

Figure 4.2 Global expansion rules

k0

k1 k2

k3 k4

L(k0) = A∗ = {♦A(a), B(a), C(d),∃u.C(a),

♦♦(D u E)(d), u(a, d), v(a, d),♦♦D(d)}

L(k1) = {A(a)} L(k2) = {♦(D u E)(d),♦D(d),

♦G(d)}

L(k3) = {D u E(d), D(d),

E(d),∃u.F (d), F (wuF),

u(d,wuF), v(d,wuF)}

L(k4) = {G(d)}

Figure 4.3 Completed constraint tree T = 〈V, k0,E,L〉

.

that are directly accessible from the current node. The ♦+-rule adds a new ♦ assertion to the

parent node from its current child node.

Example 4.3.1. Let Σ = 〈A, T ,R〉 be a ELH♦ KB, where A = {♦A(a), C(d), u(a, d)}, T =

{♦A v B,C v ♦♦(D u E), E v ∃u.F,♦D v ♦G}, R = {u v v} and S = {∃u.C, ♦♦D}.

Then, applying the rules in Figures 4.1 and 4.2 we compute the completed constraint tree

T = 〈V, k0,E,L〉 whose labeling sets are given in Figure 4.3. �

We will use the following notion of TBox acyclicity, called here ♦-acyclicity.

Definition 4.3.1. A sequence S0, S1...., Sn, ... of concept assertions over Σ, is called a ♦-

sequence, if it satisfies the following conditions:

• S0 = C0(a0), C0 ∈ CΣ,S, a0 ∈ O∗.

www.manaraa.com

65

• Given, Sn = Cn(an), with Cn ∈ CΣ,S, an ∈ O∗, the next element in the sequence can be

obtained as follows: Let Bn be the set of all assertions obtained by applying the local rules

starting from Sn. Put Dn = Bn ∪ {Sn}.

- If Dn does not contain any ♦-assertions, then Sn is the last assertion of the sequence.

- If Dn contains some ♦-assertions, then pick one, say ♦P (b), and define Sn+1 =

Cn+1(an+1) = P (b).

The resulting ♦-sequence is said to be non-repetitive, if for distinct i, j, Ci 6= Cj.

Definition 4.3.2. A TBox T is said to be ♦-acyclic (with respect to the rules given in Figures

4.1 and 4.2), if every ♦-sequence is non-repetitive.

In this chapter, we assume that all TBoxes are ♦-acyclic as per Definition 4.3.2 (we shall

omit the phrase “with respect to the rules”). We denote by Λ the algorithm which, given

Σ and CΣ,S , nondeterministically applies the expansion rules in Figures 4.1 and 4.2 until no

further applications are possible. It is easy to see that for each node k in the constraint tree

T = 〈V, k0,E,L〉, the size of L(k) is polynomial in | Σ | + | CΣ,S |. An upper bound for the

depth of T is given in the following claim which follows immediately from Definitions 4.3.1 and

4.3.2.

Claim 1. The depth of T is O(| CΣ,S |).

All executions of Λ terminate and by Claim 1, Λ builds a tree T whose depth is linear

in | CΣ,S |. Since the ♦-rule can in some cases be applied exponentially many times in |

Σ | + | CΣ,S |, T may have exponentially many nodes. For instance, consider a ELH♦ KB

Σ = 〈A, T ,R〉, where A = {A1(a)}, T = {Ai v ♦∃r.Ai+1, Ai v ♦∃s.Ai+1, 1 ≤ i ≤ n − 1} and

R = ∅. Clearly, TBox T is ♦-acyclic. To compute the constraint tree T for Σ, the global rules

must be applied exponentially many times, implying that, the worst case the running time of

Λ is exponential in | Σ | + | CΣ,S |.

Before proving the correctness of Λ, we define the notion of interpretation of a constraint

tree, see Lutz et al. (2001); Tao et al. (2012).

www.manaraa.com

66

Definition 4.3.3. Let T = 〈V, k0,E,L〉 be a constraint tree over Σ, M = 〈S, π, E〉 a Kripke

structure, and σ a mapping from V to S. We say that M satisfies T via σ if for all k, k′ ∈ V,

- (k, k′) ∈ E⇒ (σ(k), σ(k′)) ∈ E, and

- (M, σ(k)) |= L(k), i.e., (M, σ(k)) |= α for every α ∈ L(k)

We say that M satisfies T, denoted as M ||= T, if there is a mapping σ such that M satisfies T

via σ.

In the next lemma, we formulate the local soundness property of Λ. We say that f ′ is an

extension of a function f if f ′ agrees with f on the domain of f .

Lemma 4.3.1. Let Σ = 〈A, T ,R〉 be ELH♦ KB with an ♦-acyclic TBox T and let M =

〈S, π, E〉 be a Kripke structure satisfying Σ. Also let T be a constraint tree over Σ, α a local

or global expansion rule and Tα a constraint tree obtained by applying α to T. If M satisfies T

via σ, then there exists a Kripke structure M′ = 〈S, π′, E〉 such that

- π′ is an extension of π,

- M′ satisfies Tα via σ′, where σ′ is an extension of σ, and

- M′ satisfies Σ.

Proof. (Outline). We present two cases to illustrate how M is transformed into M′ by the

applications of local and global extension rules; for more details see Tao et al. (2012). Assume

the hypotheses and let α be the ∃−-rule. Then, for some k ∈ V, ∃r.C(a) ∈ L(k) in T, and since

M satisfies T via σ, we have (M, σ(k)) |= ∃r.C(a). By the semantics of existential restriction,

there exists a d ∈ ∆ such that (aπ(σ(k)), d) ∈ rπ(σ(k)) and d ∈ Cπ(σ(k)). After applying the

∃−-rule, L(k) := L(k) ∪ {r(a,w r
C), C(w r

C)}. We have two cases: (1) If w r
C occurs in T before

the application of the ∃−-rule to ∃r.C(a), then M′ = M; (2) If w r
C does not occur in T before

the application of the ∃−-rule to ∃r.C(a), then define the interpretation π′ as π except for w r
C :

(w r
C)π

′(σ(k)) = d. The resulting constraint tree Tα is satisfied by M′ = 〈S, π′, E〉 via σ. Since

M satisfies Σ and π′ is an extension of π, we conclude that M′ satisfies Σ.

www.manaraa.com

67

Now let α be the ♦−-rule. Then, for some k ∈ V, ♦C(a) ∈ L(k) in T and k does not have

a successor l with C(a) ∈ L(l). Since M satisfies T via σ, we have (M, σ(k)) |= ♦C(a). By

the semantics of ♦, there exists a state s ∈ S such that (σ(k), s) ∈ E and aπ(s) ∈ Cπ(s). After

applying the ♦−-rule, L(k′) := L(k′) ∪ {C(a)} where k′ is a newly generated node, and (k, k′)

is the new edge. Now we extend σ to σ′ by setting σ′(k′) = s. The resulting constraint tree is

Tα = 〈Vα, k0,Eα,L〉 where Vα = V∪{k′} and Eα = E∪{(k, k′)}. It follows that, Tα is satisfied

by M′ via σ′ where M′ = M. Clearly, M′ satisfies Σ. �

Lemma 4.3.1 makes sure that each application of local and global rules preserves the model

existence property. Next we define the canonical Kripke structure of a constraint tree.

Definition 4.3.4. Let T = 〈V, k0,E,L〉 be a completed constraint tree over Σ. The canonical

Kripke structure MT = 〈S, π, E〉 for T is defined as follows:

- S = V,

- E = E ,

- ∆ = O∗ = OΣ ∪W,

- aπ(k) = a for all a ∈ O∗ and each k ∈ V,

- Aπ(k) = {a ∈ O∗ | A(a) ∈ L(k)}, for all A ∈ NC ∩NΣ,

- rπ(k) = {(a, b) ∈ O∗ ×O∗ | r(a, b) ∈ L(k)}, for all r ∈ NR ∩NΣ,

π(k) is extended to compound concepts in the usual way (see Section 4.2).

The following lemma shows that MT satisfies the completed constraint tree T.

Lemma 4.3.2. Let Σ = 〈A, T ,R〉 be ELH♦ KB with a ♦-acyclic TBox T . Also let T be a

completed constraint tree over Σ. Then MT ||= T.

Proof. Assume the hypotheses. To show that MT ||= T, let σ be the identity function. By

Definition 4.3.4, for each k, k′ ∈ V, (k, k′) ∈ E⇒ (k, k′) ∈ E. Now assume that r(a, b) ∈ L(k)

where r ∈ NR, a, b ∈ O∗ and k ∈ V. Again by Definition 4.3.4, (a, b) ∈ rπ(k) implying

www.manaraa.com

68

(MT, k) |= r(a, b). To show that C(a) ∈ L(k) implies (MT, k) |= C(a), we argue by induction

on structure of C. When C ∈ NC , the claim follows directly from Definition 4.3.4. Let k ∈ V

and a ∈ O∗. The case C = D u E is easy and omitted.

- ∃r.D(a) ∈ L(k). There are two cases:

- k = k0. We have two subcases:

- For some b ∈ OΣ, r(a, b), D(b) ∈ L(k). By Definition 4.3.4, (MT, k) |= r(a, b)

and by the induction hypothesis (MT, k) |= D(b) implying (MT, k) |= ∃r.D(a) =

C(a).

- For every b ∈ OΣ, {r(a, b), D(b)} 6⊆ L(k). Since T is completed, by the ∃−-rule,

r(a,w r
D), D(w r

D) ∈ L(k). By Definition 4.3.4, (MT, k) |= r(a,w r
D) and by the

induction hypothesis (MT, k) |= D(w r
D) implying (MT, k) |= ∃r.D(a) = C(a).

- k 6= k0. Since T is completed, by the ∃−-rule, r(a,w r
D), D(w r

D) ∈ L(k). By Defini-

tion 4.3.4, (MT, k) |= r(a,w r
D) and by the induction hypothesis (MT, k) |= D(w r

D)

implying (MT, k) |= ∃r.D(a) = C(a).

- ♦D(a) ∈ L(k). Since T is completed, by the ♦−-rule, there exists k′ ∈ V such that

(k, k′) ∈ E and D(a) ∈ L(k′). By Definition 4.3.4, (k, k′) ∈ E and by the induction

hypothesis (MT, k
′) |= D(a). Hence (MT, k) |= ♦D(a) = C(a). �

Next we prove that (MT, k) |= T ∪ R, for each k ∈ S. We need the following auxiliary

lemma.

Lemma 4.3.3. For each C ∈ CΣ,S , each a ∈ O∗ and each k ∈ V, if (MT, k) |= C(a) then

C(a) ∈ L(k).

Proof. The proof is by induction on the structure of C. When C ∈ NC , the claim follows

directly from Definition 4.3.4. The case C = D u E is easy and omitted.

- C = ∃r.D. By assumption, (MT, k) |= ∃r.D(a). This implies, (MT, k) |= r(a, b) and

(MT, k) |= D(b) for some b ∈ O∗. By Definition 4.3.4, r(a, b) ∈ L(k) and by induction

hypothesis D(b) ∈ L(k). Since T is completed and ∃r.D ∈ CΣ,S , by the ∃+-rule, ∃r.D(a) =

C(a) ∈ L(k).

www.manaraa.com

69

- C = ♦D. By assumption, (MT, k) |= ♦D(a). Hence, for some k′ ∈ E(k), (MT, k
′) |=

D(a). By Definition 4.3.4, (k, k′) ∈ E and by the induction hypothesis D(a) ∈ L(k′).

Since T is completed and ♦D ∈ CΣ,S , by the ♦+-rule, ♦D(a) = C(a) ∈ L(k). �

Lemma 4.3.4. For each k ∈ S, (MT, k) |= T ∪ R.

Proof. First we show that (MT, k) |= T , for each k ∈ S. Suppose that C v D ∈ T and let

a ∈ Cπ(k). This means that (MT, k) |= C(a) and by Lemma 4.3.3, C(a) ∈ L(k). Since T is

completed, by the v-rule, D(a) ∈ L(k). Since MT ||= T, by Lemma 4.3.2, (MT, k) |= D(a).

Therefore, (MT, k) |= C v D. Hence, (MT, k) |= T .

Next, we show that (MT, k) |= R, for each k ∈ S. Let r v s ∈ R and assume that

(MT, k) |= r(a, b) . By Definition 4.3.4, r(a, b) ∈ L(k). Since T is completed, by the H-rule,

s(a, b) ∈ L(k). Since MT ||= T, by Lemma 4.3.2, (MT, k) |= s(a, b). Therefore, (MT, k) |= r v s.

Hence (MT, k) |= R. �

The following corollary is an immediate consequence of Lemmas 4.3.2 and 4.3.4.

Corollary 4.3.1. MT satisfies Σ.

Proof. By Definitions 4.3.3 and 4.3.4 and Lemmas 4.3.2 and 4.3.4, we have that (1) (MT, k0) |=

Σ and (2) for each k ∈ V, (MT, k) |= T ∪ R. Hence MT satisfies Σ. �

The proof of the next theorem follows immediately from Definition 4.3.4 and Lemma 4.3.3.

In a sense, this theorem captures the completeness property of the algorithm Λ.

Theorem 4.3.1. Let T = 〈V, k0,E,L〉 be a completed constraint tree over Σ and MT = 〈S, π, E〉

a canonical Kripke structure for T. Then, for all k ∈ V, C ∈ CΣ,S , r ∈ NΣ ∩ NR, and all

a, b ∈ O∗

- (MT, k) |= r(a, b)⇒ r(a, b) ∈ L(k) and

- (MT, k) |= C(a)⇒ C(a) ∈ L(k).

Finally, the following is a consequence of Theorem 4.3.1 and Corollary 4.3.1.

Corollary 4.3.2. L(k0) = A∗.

www.manaraa.com

70

4.4 Secrecy-Preserving Reasoning in ELH♦ KBs

Let Σ = 〈A, T ,R〉 be a ELH♦ KB and S ⊆ A∗ the “secrecy set”. Also let T = 〈V, k0,E, L〉

be a completed constraint tree over Σ. Given Σ, S and T, the objective is to answer assertion

queries while preserving secrecy, i.e., answering queries so that assertions in S remain protected.

Our approach is to compute a function E that assigns a finite set of assertions to each node in

T. E is called the secrecy Envelope for S, so that protecting E(i) for all i ∈ V, the querying

agent cannot logically infer any assertion in S. The sets E(i) for each i ∈ V are obtained

by applying the inverted expansion rules given in Figures 4.4 and 4.5. The role of OWA in

answering the queries is the following: When answering a query with “Unknown”, the querying

agent should not be able to distinguish between the case that the answer to the query is truly

unknown to the KB reasoner and the case that the answer is being protected for reasons of

secrecy. We envision a situation in which once the T is computed, a reasoner R is associated

with it, i.e., R has unfettered access to T. R is designed to answer queries as follows: If a

query cannot be inferred from Σ, the answer is “Unknown”. If it can be inferred and it is not

in E(k0), the answer is “Yes”; otherwise, the answer is “Unknown”. We make the following

assumptions about the capabilities of the querying agent:

(a) does not have direct access to ABox A, but is aware of the underlying vocabulary of Σ,

(b) has full access to TBox T and RBox R,

(c) can ask queries in the form of assertions, and

(d) is not aware of the witness set W, by hidden name assumptions (HNA), for more details

see Tao et al. (2010).

We formally define the notion of an envelope in the following:

Definition 4.4.1. Let Σ = 〈A, T ,R〉 be a ELH♦ KB, S a finite secrecy set and T = 〈V, k0,E,L〉

a completed constraint tree. The secrecy envelope of S is a function E with domain V satisfying

the following properties:

- S ⊆ E(k0),

www.manaraa.com

71

Inv- u− −rule : if {C(a), D(a)} ∩ E(i) 6= ∅ and C uD(a) ∈ L(i) \ E(i),

then E(i) := E(i) ∪ {C uD(a)};
Inv- u+ −rule : if C uD(a) ∈ E(i), {C(a), D(a)} ⊆ L(i) \ E(i) and

C uD ∈ CΣ,S , then E(i) := E(i) ∪ {C(a)} or E(i) := E(i) ∪ {D(a)};
Inv-∃+ − rule : if ∃r.C(a) ∈ E(i), {r(a, b), C(b)} ⊆ L(i) \ E(i) with b ∈ O∗ and

∃r.C ∈ CΣ,S , then E(i) := E(i) ∪ {r(a, b)} or E(i) := E(i) ∪ {C(b)};
Inv- v −rule : if D(a) ∈ E(i), C v D ∈ T , and C(a) ∈ L(i) \ E(i),

then E(i) := E(i) ∪ {C(a)};
Inv-H − rule : if s(a, b) ∈ E(i), r v s ∈ R, and r(a, b) ∈ L(i) \ E(i),

then E(i) := E(i) ∪ {r(a, b)}.

Figure 4.4 Inverted local expansion rules

- for each i ∈ V, E(i) ⊆ L(i), and

- for each i ∈ V, each α ∈ E(i), L(i) \ E(i) 6|= α.

The intuition for the above definition is that no information in E(i) can be inferred from

the set L(i) \ E(i) for each i ∈ V. To compute an envelope, we use the idea of inverting

the rules of Figures 1 and 2 (see Tao et al. (2010), where this approach was first utilized for

membership assertions). Induced by the Local and Global expansion rules in Figures 4.1 and

4.2, we define the corresponding “inverted” Local and Global expansion rules in Figures 4.4

and 4.5, respectively. Note that the ∃−-rule does not have its corresponding inverted rule.

The reason for the omission is that an application of this rule results in adding assertions with

individual names from the witness set. By HNA, the querying agent is barred from asking

any queries that involve individual names from the witness set. Inverted expansion rules are

denoted by prefixing Inv- to the name of the corresponding expansion rules.

From now on, we assume that T has been computed and is readily available for computing

the envelope. The computation begins with the initialization step: The set E(k0) is initialized

as S, and E(i) is initialized as ∅ for all i ∈ V \ {k0}. Next, the sets E(k0) and E(i) for all

i ∈ V\{k0} are expanded using the inverted expansion rules listed in Figures 4.4 and 4.5 until no

further applications are possible. The resulting function E is said to be completed. We denote

www.manaraa.com

72

Inv-♦− − rule : if there is a node j with C(a) ∈ E(j) and ♦C(a) ∈ L(i) \ E(i)

where i is the parent of j, then E(i) := E(i) ∪ {♦C(a)};
Inv-♦+ − rule : if there is a node i with ♦C(a) ∈ E(i) and C(a) ∈ L(j) \ E(j)

where j is a successor of i and ♦C ∈ CΣ,S ,
then E(j) := E(j) ∪ {C(a)}.

Figure 4.5 Inverted global expansion rule

by ΛS the algorithm which computes the sets E(i) for all i ∈ V. Due to non-determinism in

applying the rules Inv-u+ and Inv-∃+, different executions of ΛS may result different outputs.

Since for each i ∈ V, L(i) is finite, the computation of ΛS terminates. Let the sets E(i) for

i ∈ V be an output of ΛS. Since the size of each L(i) is polynomial in |Σ| + |CΣ,S |, and each

application of inverted expansion rule moves an assertion from L(i) into E(i), the size of E(i)

is at most the size of L(i). Since the size of V can be exponential, ΛS may take exponential

time to compute the sets E(i). Define the secrecy-preserving tree (constraint) for the secrecy

set S to be TE = 〈V, k0,E, LE〉, where LE(i) = L(i) \ E(i) for all i ∈ V.

Example 4.4.1. (Example 4.3.1 cont.) Recall that T = 〈V, k0,E,L〉 is the completed constraint

tree. Let S = {B(a),♦♦D(d)} be the secrecy set. Then, by using rules in Figures 4.4 and 4.5

we compute the envelope for S, and one of the corresponding secrecy-preserving trees is given

in Figure 4.6:

- E(k0) = S ∪ {♦A(a), C(d),♦♦(D u E)(d)},

- E(k1) = {A(a)},

- E(k2) = {♦(D u E)(d),♦D(d)},

- E(k3) = {D u E(d), D(d)} and

- E(k4) = ∅. �

We use this secrecy-preserving tree for proving some properties of the envelopes and for

answering queries. Before proving the main result on envelopes, we prove several auxiliary

www.manaraa.com

73

k0

k1 k2

k3 k4

LE(k0) = {u(a, d),∃u.C(a),

v(a, d)}

LE(k1) = ∅ LE(k2) = {♦G(d)}

LE(k3) = {E(d),

∃u.F (d), u(d,wuF),

F (wuF), v(d,wuF)}

LE(k4) = {G(d)}

Figure 4.6 Secrecy-preserving tree TE = 〈V, k0,E,LE〉

lemmas. First, we show that for each i ∈ V, no assertions in E(i) is “logically reachable” from

the members of the set LE(i).

Lemma 4.4.1. Let the function E be completed by applying the inverted rules in Figures 4.4

and 4.5. Also, let TE = 〈V, k0,E, LE〉 be a secrecy-preserving tree. Then, for each i ∈ V, LE(i)

is completed.

Proof. Let i be any node in V and j ∈ V its successor. We have to show that no rule in Figures

4.1 or 4.2 is applicable to LE(i) = L(i)\E(i). The proof is by contradiction according to cases:

assuming that a rule in Figures 4.1 and 4.2 is applicable and showing that some inverse rule is

applicable.

- If u−-rule is applicable, then there is an assertion C u D(a) ∈ LE(i) such that C(a) /∈

LE(i) or D(a) /∈ LE(i). Since L(i) is completed, {C(a), D(a)} ⊆ L(i). Hence, {C(a), D(a)}∩

E(i) 6= ∅. This makes the Inv-u−-rule applicable.

- If u+-rule is applicable, then there are assertions C(a), D(a) ∈ LE(i) such that C u

D ∈ CΣ,S and C u D(a) /∈ LE(i). Since L(i) is completed, C u D(a) ∈ L(i). Hence,

C uD(a) ∈ E(i). This makes the Inv-u+-rule applicable.

- If ∃+-rule is applicable, then there are assertions r(a, b), C(b) ∈ LE(i) such that ∃r.C ∈

CΣ,S and ∃r.C(a) /∈ LE(i). Since L(i) is completed, ∃r.C(a) ∈ L(i). Hence, ∃r.C(a) ∈

E(i). This makes the Inv-∃+-rule applicable.

www.manaraa.com

74

- If v-rule is applicable, then there is an assertion C(a) ∈ LE(i) and a GCI C v D ∈ T

such that D(a) /∈ LE(i). Since L(i) is completed, D(a) ∈ L(i). Hence, D(a) ∈ E(i). This

makes the Inv-v-rule applicable.

- If H-rule is applicable, then there is an assertion r(a, b) ∈ LE(i) and a role inclusion

r v s ∈ R such that s(a, b) /∈ LE(i). Since L(i) is completed, s(a, b) ∈ L(i). Hence,

s(a, b) ∈ E(i). This makes the Inv-H-rule applicable.

- If ♦+-rule is applicable, then there is an assertion C(a) ∈ LE(j) such that ♦C(a) /∈ LE(i)

where i is the predecessor of j. Since L(i) is completed, ♦C(a) ∈ L(i). Hence, ♦C(a) ∈

E(i). This makes the Inv-♦−-rule applicable.

- If ♦−-rule is applicable, then there is an assertion ♦C(a) ∈ LE(i) such that i has no

successor k with C(a) /∈ LE(k). Since T is a completed constraint tree, there is a node

j which is a successor of i such that C(a) ∈ L(j). Hence, C(a) ∈ E(j). This makes the

Inv-♦+-rule applicable. �

Next we claim that the secrecy-preserving tree has similar properties as that of its completed

constraint tree. The proof is similar to the proofs of the Lemmas 4.3.2, 4.3.3 and 4.3.4.

Lemma 4.4.2. Let TE = 〈V, k0,E, LE〉 be a secrecy-preserving tree obtained from the completed

constraint tree T = 〈V, k0,E, L〉 over Σ and the completed function E. Define the canonical

Kripke structure ME
T = 〈S, π, E〉 for TE as

- S = V,

- E = E ,

- ∆ = O∗ = OΣ ∪W,

- aπ(k) = a for all a ∈ O∗ and each k ∈ V,

- Aπ(k) = {a ∈ O∗ | A(a) ∈ LE(k)}, for all A ∈ NC ,

- rπ(k) = {(a, b) ∈ O∗ ×O∗ | r(a, b) ∈ LE(k)}, for all r ∈ NR,

π(k) is extended to compound concepts in the usual way (see Section 4.2). Then,

www.manaraa.com

75

- ME
T ||= TE,

- For each C ∈ CΣ,S , each a ∈ O∗ and each k ∈ V, if (ME
T , k) |= C(a), then C(a) ∈ LE(k)

and

- For each k ∈ S, (ME
T , k) |= T ∪ R.

Finally, we show that a completed function E is in fact an envelope for the secrecy set S,

see Definition 4.4.1.

Theorem 4.4.1. Let T = 〈V, k0,E, L〉 be a completed constraint tree over Σ. Also, let TE =

〈V, k0,E, LE〉 be a secrecy-preserving tree for the secrecy set S. Then, the completed function

E is an envelope for S.

Proof. We have to show that the completed function E satisfies all three properties of Definition

4.4.1. Properties 1 and 2 are obvious. To prove property 3, suppose that for some i ∈ V, some

α ∈ E(i), LE(i) |= α.

Let ME
T = 〈S, π, E〉 be the canonical Kripke structure for TE. By Lemma 4.4.2, for each

i ∈ V, (ME
T , i) |= LE(i). Again, by Lemma 4.4.2, α ∈ LE(i). This is a contradiction.

4.5 Query Answering

Let Σ = 〈A, T ,R〉 be a ELH♦ KB. We assume that the secrecy-preserving tree TE =

〈V, k0,E, LE〉 has been precomputed and use E(k) to denote the set {k′ ∈ V | (k, k′) ∈ E} of

the successors of the node k ∈ V. The reasoner R answers queries based on the information

in TE and replies to a query q with “Yes” if Σ |= q and q 6∈ E(k0); otherwise, the answer is

“Unknown”. Because of the syntactic restrictions of the language ELH♦, R does not answer

“No” to any query.

Since the completed constraint tree T over Σ does not contain all the consequences of Σ,

the completed secrecy-preserving tree TE obtained from T does not contain all the information

needed to answer queries. To address this problems we provide a procedure Eval(k, q) which

works by recursively decomposing the compound queries all the way to the information available

in TE . Initial call of this procedure is at the root node k0 of TE . In lines 1 and 2 of Figure

www.manaraa.com

76

Eval(k, q)

1: case q ∈ LE(k) = L(k) \ E(k)

2: return “Yes”

3: case q = C uD(a)

4: if Eval(k,C(a)) =“Yes” and Eval(k,D(a)) =“Yes” then

5: return “Yes”

6: else

7: return “Unknown”

8: case q = ∃r.C(a)

9: if for some d ∈ O∗ [r(a, d) ∈ LE(k) and

Eval(k,C(d)) =“Yes”] then

10: return “Yes”

11: else

12: return “Unknown”

13: case q = ♦C(a)

14: if for some l ∈ E(k) [Eval(l, C(a)) = “Yes”] then

15: return “Yes”

16: else

17: return “Unknown”

Figure 4.7 Query answering algorithm for assertional queries

4.7, the reasoner checks the membership of q in LE(k) and answers “Yes” if q ∈ LE(k). From

line 3 onwards we consider cases in which query q is broken into subqueries based on the

constructors defined in ELH♦ and apply the procedure recursively. The following theorem

states the correctness claim of the algorithm.

Theorem 4.5.1. Let Σ = 〈A, T ,R〉 be an ELH♦ KB, TE = 〈V, k0,E,LE〉 a completed secrecy-

preserving tree and q a query. Then, for every k ∈ V,

- Soundness: Eval(k, q) outputs “Yes” ⇒ LE(k) |= q;

- Completeness: Eval(k, q) outputs “Unknown” ⇒ LE(k) 6|= q.

Proof. We first consider the soundness part. Assume that Eval(k, q) = “Yes”. Let M =

〈S, π, E〉 be a Kripke structure satisfying LE(k). Since TE is a completed constraint tree, by

Lemma 4.3.1, M ||= TE, i.e., M satisfies TE via some mapping σ : V→ S. By Definition 4.3.3,

(M, σ(k)) |= LE(k). Now, we prove the claim by induction on the structure of q. The inductive

hypothesis is, for each k ∈ V and each assertion α, if Eval(k, α) = “Yes”, then (M, σ(k)) |= α.

www.manaraa.com

77

The base case: If q ∈ LE(k), then by Definition 4.3.3, (M, σ(k)) |= q. Next, consider the case

q 6∈ LE(k).

- q = C uD(a). Then, Eval(k,C(a)) = Eval(k,D(a)) = “Yes” (by Lines 3 and 5 in Figure

4.7) and by inductive hypothesis, (M, σ(k)) |= C(a) and (M, σ(k)) |= D(a). Hence, (M,

σ(k)) |= C uD(a).

- q = ∃r.C(a). Then, for some d ∈ O∗, r(a, d) ∈ LE(k) and Eval(k, C(d)) = “Yes”

(by Lines 8 and 9 in Figure 4.7). By Definition 4.3.3, (M, σ(k)) |= r(a, d) and by the

inductive hypothesis (M, σ(k)) |= C(d). Hence, (M, σ(k)) |= ∃r.C(a).

- q = ♦C(a). Then, for some l ∈ E(k), Eval(l, C(a)) = “Yes” (by Lines 13 and 14

in Figure 4.7). By Definition 4.3.3, (σ(k), σ(l)) ∈ E and by the inductive hypothesis

(M, σ(l)) |= C(a). By the semantics of ♦, (M, σ(k)) |= ♦C(a).

To prove the completeness part assume that LE(k) |= q. We have to show that Eval(k, q) =

“Yes”. Let ME
T be the canonical Kripke structure for TE as defined in Section 4.4. By Lamma

4.4.2, ME
T ||= TE and for all k ∈ V, (ME

T , k) |= T ∪R. Therefore (ME
T , k) |= LE(k) and hence,

by the assumption, for every k, (ME
T , k) |= q. We prove the claim by induction on the structure

of q. The inductive hypothesis is, for each k ∈ V and each assertion α if (ME
T , k) |= α, then

Eval(k, α) = “Yes”. The base case: Let q = C(a) where C ∈ CΣ,S . Then, by Lemma 4.4.2,

C(a) ∈ LE(k). By Lines 1 and 2 in Figure 4.7, the claim follows immediately. Next, let

q = C(a) where C 6∈ CΣ,S .

- q = CuD(a). To answer this query the algorithm computes Eval(k,C(a)) and Eval(k,D(a)).

Now, the assumption (ME
T , k) |= C uD(a) implies (ME

T , k) |= C(a) and (ME
T , k) |= D(a)

which, by inductive hypothesis, implies that Eval(k,C(a)) = Eval(k,D(a)) = “Yes”.

Hence, by Lines 4 and 5 in Figure 4.7, Eval(k,C uD(a)) = “Yes”.

- q = ∃r.C(a). By the assumption, (ME
T , k) |= ∃r.C(a). This implies that, for some

d ∈ O∗, (ME
T , k) |= r(a, d) and (ME

T , k) |= C(d). By Theorem 4.3.1, r(a, d) ∈ LE(k) and

by the inductive hypothesis Eval(k,C(d))=“Yes”. Hence, by the Lines 9 and 10 in Figure

4.7, Eval(k, ∃r.C(a))= “Yes”.

www.manaraa.com

78

- q = ♦C(a). Then, (ME
T , k) |= ♦C(a). This implies that, for some l ∈ E(k), (ME

T , l) |=

C(a). By Definition 4.3.4, (k, l) ∈ E and therefore l ∈ E(k). By the inductive hypothesis

Eval(l, C(a)) = “Yes”. Hence, by the Lines 14 and 15 in Figure 4.7, Eval(k,♦C(a))=

“Yes”. �

Given an assertional query q, the algorithm given in Figure 4.7 checks for some assertions

related to query q in the labeling sets of nodes along a particular path in TE . Since the size

of each labeling set is bounded by | Σ | + | CΣ,S |, by the Claim 1, this algorithm runs in

time polynomial in | Σ | + | CΣ,S |. Hence the assertional query answering can be done in

polynomial time in the size of | Σ | + | CΣ,S |.

Example 4.5.1. (example 4.4.1 cont.) Recall that TE is a secrecy-preserving tree. Suppose

that the querying agent asks the assertional queries ∃u.C(a), ♦♦∃v.F (d) and ♦A(a) . Using

the algorithm in Figure 4.7, we get the following answers:

q Eval(k, q) Remarks

∃u.C(a) Yes by Lines 1 and 2

♦♦∃v.F (d) Yes by Lines 14, 15, 9 and 1

♦A(a) Unknown by Lines 14 and 17 �

4.6 Conclusions

In this chapter we have studied the problem of secrecy-preserving query answering over

ELH♦ KBs. We have used the conceptual logic-based framework for secrecy-preserving rea-

soning which was introduced by Tao et al., see Tao et al. (2014), to a description logic ELH

augmented with a modal operator ♦. The main contribution is in the way that we compute

the consequences and preserve secrecy while answering queries. We break the process into two

parts, the first one using the ♦-assertions in the KB, precomputes the rooted labeled tree T

and the envelope E for the given secrecy set S. For this we use two separate (but related)

tableau procedures. In query answering step, given T and E, we define the secrecy-preserving

tree TE . Once TE has been computed, the query answering procedure is efficient and can be

implemented in polynomial time.

www.manaraa.com

79

CHAPTER 5. SUMMARY AND DISCUSSION

The main focus of this dissertation is to study the problem of SPQA with single querying

agent in lightweight DLs DL-LiteR, and ELH and its extension ELH♦. The main steps involved

in the construction of SPQA system are (1) computing all or some of the consequences of the

given KB by designing suitable tableau algorithms, (2) computing the envelopes for the given

secrecy sets by designing tableau style procedures based on the idea of inverting the rules in

tableau algorithms and (3) answering queries as informatively as possible without revealing

the secrets in the secrecy sets. For each language, we used a different strategy to design

procedures to compute the consequences of the KB, envelopes and query answering steps. We

also considered different types of statements like assertional, GCI and BCQ in the secrecy sets.

Important contributions in this work are listed in the following:

• In Chapter 2, we studied the problem of SPQA over acyclic DL-LiteR KBs with BCQs

in the secrecy set. A tableau algorithm was designed to compute consequences of a KB.

Some rules in the tableau algorithm are able to compute negative assertions entailed by

the KB. To show the tableau algorithm sound and complete, we used the semantics based

on Kleene’s 3-valued logic. We provided syntactic characterizations for entailment and

disentailment of BCQs in terms of properties of mappings. In the envelope computation

step, since BCQs are not the part of DL-LiteR syntax, we designed two special rules

to protect BCQs in the secrecy set. Graph matching technique was used to answer the

BCQs.

• In Chapter 3, we considered the DL ELH to study the SPQA problem with assertions

and GCIs as secrets. The important contribution in this work was the way in which we

compute the consequences and preserve secrecy while answering queries. The idea is to

www.manaraa.com

80

break the process into two parts, first one precomputes all the consequences for concepts

and individuals that occur in the given KB. Two tableau algorithms were designed to

compute the consequences. Based on the rules in these two algorithms, we designed two

more tableau style algorithms to compute the corresponding envelopes. In the query

answering step, the queries were parsed all the way to constituents that occur in the

previously precomputed set of consequences. Then, the queries were answered based

on the membership of the constituents of the query in A∗ \ EA and T ∗ \ ET . All the

algorithms are efficient and can be implemented in polynomial time.

• In chapter 4, we studied the problem of secrecy-preserving query answering over ELH♦

KBs. We used the conceptual logic-based framework for secrecy-preserving reasoning to a

description logic ELH augmented with a modal operator ♦. In the first step, to compute

a set of consequences of ELH♦ KB, we designed a tableau algorithm to construct a rooted

labeled tree T whose root node have the labeling set which contains the consequences of

the KB. Given the computed tree T and the secrecy set S, we next computed an envelope

E for the secrecy set. In query answering step, given T and E, we defined the secrecy-

preserving tree TE . Since TE does not contain all the consequences of the given KB, the

information available in TE is not sufficient to answer queries correctly. To fix this issue,

we designed an inductive algorithm to answer queries by breaking the queries all the way

to constituents that are available in TE . Given TE , the query answering procedure is

efficient and can be implemented in polynomial time.

We conclude this dissertation by mentioning some of the future work that we intend to

pursue. We would like to study this SPQA problem in probabilistic DLs Lutz and Schroder

(2010); Gutierrez-Basulto et al. (2012) and temporal DLs Gutierrez-Basulto et al. (2012). We

also would like to extend SPQA problem that we studied in this dissertation to multiagents

settings similar to Tao et al. (2014).

www.manaraa.com

81

APPENDIX A. ADDITIONAL MATERIAL

A.1 Additional Material for Chapter 2

A.1.1 Proof of Lemma 2.3.1

Lemma 2.3.1 (Soundness of Λ, Part A) Let A∗12 be a completed ABox obtained from Σ by first

applying the rules listed in Figure 1 and then the rules of Figure 2. Then for every OW-model

I of Σ, there is a OW-model I∗12 of Σ such that I∗12 |= A∗12, where the domain of I∗12 is same as

the domain of I and I∗12 remains same as I except for the interpretation of fresh individuals.

Proof. Let I =
〈
∆, ·I

〉
be an arbitrary OW-model of Σ. It suffices to show that after applying

each expansion rule, there is an OW-model of Σ that satisfies the new assertions being added

to A∗ by that rule and that differs from (possibly) original interpretation only on how it

interprets the new fresh individuals. The proof is by induction on the construction of A∗. For

the induction step, we use A′ (A′′), O′ (O′′) and I ′ =
〈

∆, ·I′
〉

(I ′′ =
〈

∆, ·I′′
〉

) to denote the

ABox, the set of individual names appearing in the ABox, and the model of the ABox (and the

TBox), respectively, before (after) the application of an expansion rule. The OW-model at the

termination of this stage (when no more applications of rules in Figures 1 and 2 are possible) is

denoted by I∗12. The base case is before any expansion rules have been applied in which case,

A∗ = A and we can take I ′ = I ′′ = I. There are seven cases (the number of rules in Figures 1

and 2, all rather simple).

- If vNL-rule is applicable, then A(a) ∈ A′, A v L ∈ T and L(a) ∈ A′′. By induction

hypothesis, I ′ |= A(a), hence aI
′ ∈ AI′Y ⊆ LI

′
Y . Let I ′′ = I ′. Then, aI

′′
= aI

′ ∈ LI′Y =

LI
′′
Y . Hence, I ′′ |= L(a).

- If vN∃-rule is applicable, we have two cases (i) R = P , and (ii) R = P−. We consider

www.manaraa.com

82

the latter case, the first one being easier. By assumption, A(a) ∈ A′, A v ∃P− ∈ T ,

P (c, a) ∈ A′′ where c is fresh, and O′′ = O′ ∪ {c}. By induction hypothesis I ′ |= A(a),

hence aI
′ ∈ AI

′
Y ⊆ (∃P−)I

′
Y . This implies (d, aI

′
) ∈ P I

′
Y for some d ∈ ∆. Let I ′′ be

same as I ′ except redefine cI
′′

= d. Then, (cI
′′
, aI

′′
) = (d, aI

′
) ∈ P I

′
Y = P I

′′
Y . Hence,

I ′′ |= P (c, a).

- If v∃L-rule is applicable, we have two cases (i) R = P , and (ii) R = P−. We argue the

latter case. By assumption, P (b, a) ∈ A′, ∃P− v L ∈ T and L(a) ∈ A′′. By induction

hypothesis, I ′ |= P (b, a) ⇒ (bI
′
, aI

′
) ∈ P I′Y ⇒ (aI

′
, bI

′
) ∈ (P−)I

′
Y ⇒ aI

′ ∈ (∃P−)I
′
Y ⇒

aI
′ ∈ LI′Y . Let I ′′ = I ′. Then, aI

′′
= aI

′ ∈ LI′Y = LI
′′
Y . Hence, I ′′ |= L(a).

- If v∃∃-rule is applicable, we have four cases (i) R = P, S = Q, (ii) R = P, S = Q−, (iii)

R = P−, S = Q and (iv) R = P−, S = Q−. We consider the case (iv), the other cases can

be argued similarly. By assumption, P (b, a) ∈ A′, ∃P− v ∃Q− ∈ T and Q(c, a) ∈ A′′,

where c is fresh, and O′′ = O′ ∪ {c}. By induction hypothesis, I ′ |= P (b, a), hence

(bI
′
, aI

′
) ∈ P I′Y . That is, (aI

′
, bI

′
) ∈ (P−)I

′
Y ⇒ aI

′ ∈ (∃P−)I
′
Y ⇒ aI

′ ∈ (∃Q−)I
′
Y . This

implies (d, aI
′
) ∈ QI

′
Y for some d ∈ ∆. Let I ′′ be same as I ′ except redefine cI

′′
= d.

Then, (cI
′′
, aI

′′
) = (d, aI

′
) ∈ QI′Y = QI

′′
Y . Hence, I ′′ |= Q(c, a).

- If vRE-rule is applicable, we have eight cases (i) R = P,E = Q, (ii) R = P,E = Q−, (iii)

R = P−, E = Q, (iv) R = P−, E = Q−, (v) R = P,E = ¬Q, (vi) R = P,E = ¬Q−, (vii)

R = P−, E = ¬Q and (viii) R = P−, E = ¬Q−. We consider the case (viii), the other

cases being easier. By assumption, P (b, a) ∈ A′, P− v ¬Q− ∈ T and ¬Q(b, a) ∈ A′′. By

induction hypothesis, I ′ |= P (b, a), hence (bI
′
, aI

′
) ∈ P I′Y . That is, (aI

′
, bI

′
) ∈ (P−)I

′
Y ⇒

(aI
′
, bI

′
) ∈ (¬Q−)I

′
Y ⇒ (aI

′
, bI

′
) ∈ (Q−)I

′
N . This implies (bI

′
, aI

′
) ∈ QI′N . Let I ′′ = I ′.

Then, (bI
′′
, aI

′′
) = (bI

′
, aI

′
) ∈ QI′N = QI

′′
N . Hence, I ′′ |= ¬Q(b, a).

- If vN@-rule is applicable, we have two cases (i) R = P , and (ii) R = P−. We consider

the latter case, the first one being easier. By assumption, A(a) ∈ A′, A v ¬∃P− ∈ T ,

and ¬P (c, a) ∈ A′′ for every c ∈ O′ = O′′. By induction hypothesis, I ′ |= A(a), hence

aI
′ ∈ AI′Y ⊆ (¬∃P−)I

′
Y = (∃P−)I

′
N . This implies (d, aI

′
) ∈ P I′N for every d ∈ ∆. Let I ′′ be

www.manaraa.com

83

same as I ′. Then, for every c ∈ O′′, (cI
′′
, aI

′′
) = (cI

′
, aI

′
) ∈ (¬P)I

′
Y = (¬P)I

′′
Y . Hence,

for every c ∈ O′′, I ′′ |= ¬P (c, a).

- If v∃@-rule is applicable, we have four cases (i) R = P, S = Q, (ii) R = P, S = Q−, (iii)

R = P−, S = Q and (iv) R = P−, S = Q−. We consider the case (iv), the other cases can

be argued similarly. By assumption, P (b, a) ∈ A′, ∃P− v ¬∃Q− ∈ T and ¬Q(c, a) ∈ A′′,

for every c ∈ O′ = O′′. By induction hypothesis, I ′ |= P (b, a), hence (bI
′
, aI

′
) ∈ P I′Y .

That is, (aI
′
, bI

′
) ∈ (P−)I

′
Y ⇒ aI

′ ∈ (∃P−)I
′
Y ⇒ aI

′ ∈ (¬∃Q−)I
′
Y = (∃Q−)I

′
N . This

implies (d, aI
′
) ∈ QI′N for every d ∈ ∆. Let I ′′ be same as I ′. Then, for every c ∈ O′′,

(cI
′′
, aI

′′
) = (cI

′
, aI

′
) ∈ QI′N = (¬Q)I

′
Y = (¬Q)I

′′
Y . Hence, for every c ∈ O′′, I ′′ |= ¬Q(c, a).

A.1.2 Proof of Lemma 2.3.2

Lemma 2.3.2 (Soundness of Λ, Part B) Let A∗ be a completed ABox obtained from A∗12 by

applying the rules listed in Figure 3. For any OW-model I of Σ, let I∗ =
〈
∆∗, ·I∗

〉
be an

OW-interpretation as defined above. Then, I∗ is an OW-model of Σ and I∗ |= A∗.

Proof. Let I =
〈
∆, ·I

〉
be a OW-model of Σ. Then, by Lemma 2.3.1, I∗12 is an OW-model of

〈A∗12, T 〉 and by Corollary 2.3.1, I∗ =
〈
∆∗, ·I∗

〉
is also a OW-model of 〈A∗12, T 〉 and hence a

model of Σ. To prove the entailment it suffices to show that after applying each expansion rule

in Figure 3, I∗ satisfies the new assertions being added to A∗. The proof is by induction on the

construction of A∗. The base case is before any expansion rules in Figure 3 have been applied.

In this case, A∗ = A∗12 and, by Corollary 2.3.1, I∗ satisfies A∗. For the induction step, we use

A′ (A′′) to denote the ABox, before (after) the application of an expansion rule.

- If vNL¬-rule is applicable, then ¬L(a) ∈ A′, A v L ∈ T and ¬A(a) ∈ A′′. By induction

hypothesis, I∗ |= ¬L(a), hence aI
∗ ∈ (¬L)I

∗
Y = LI

∗
N ⊆ AI

∗
N . Hence, I∗ |= ¬A(a).

- If vN∃¬-rule is applicable, we have two cases (i) R = P , and (ii) R = P−. We consider

the latter case, the first one being easier. By assumption, ∀b ∈ O∗ [¬P (b, a) ∈ A′],

A v ∃P ∈ T and ¬A(a) ∈ A′′. By induction hypothesis, I∗ |= ¬P (a, b), for every b ∈ O∗

www.manaraa.com

84

⇒ ∀d ∈ ∆∗ [(aI
∗
, d) ∈ (¬P)I

∗
Y = P I

∗
N] ⇒ aI

∗ ∈ (∃P)I
∗
N . Hence aI

∗ ∈ (∃P)I
∗
N ⊆ AI

∗
N .

Therefore, I∗ |= ¬A(a).

- If vRE¬-rule is applicable, we have eight cases (i) R = P,E = Q, (ii) R = P,E = Q−, (iii)

R = P−, E = Q, (iv) R = P−, E = Q−, (v) R = P,E = ¬Q, (vi) R = P,E = ¬Q−, (vii)

R = P−, E = ¬Q and (viii) R = P−, E = ¬Q−. We consider the case (viii), the other

cases being easier. By assumption, Q(b, a) ∈ A′, P− v ¬Q− ∈ T and ¬P (b, a) ∈ A′′.

By induction hypothesis, I∗ |= Q(b, a), hence (bI
∗
, aI

∗
) ∈ QI

∗
Y . That is, (aI

∗
, bI

∗
) ∈

(Q−)I
∗
Y = (¬Q−)I

∗
N ⊆ (P−)I

∗
N This implies (bI

∗
, aI

∗
) ∈ P I∗N . Hence, I∗ |= ¬P (b, a).

- If vN@¬-rule is applicable, we have two cases (i) R = P , and (ii) R = P−. We argue the

latter case. By assumption, P (b, a) ∈ A′, A v ¬∃P− ∈ T and ¬A(a) ∈ A′′. By induction

hypothesis, I∗ |= P (b, a) ⇒ (bI
∗
, aI

∗
) ∈ P I

∗
Y ⇒ aI

∗ ∈ (∃P−)I
∗
Y ⇒ aI

∗ ∈ AI
∗
N . Hence,

I∗ |= ¬A(a).

- If v∃L¬-rule is applicable, we have two cases (i) R = P , and (ii) R = P−. We consider

the latter case. By assumption, ¬L(a) ∈ A′, ∃P− v L ∈ T and ¬P (b, a) ∈ A′′ for every

b ∈ O∗. By induction hypothesis, I∗ |= ¬L(a), hence aI
∗ ∈ (¬L)I

∗
Y = LI

∗
N ⊆ (∃P−)I

∗
N .

This implies, (d, aI
∗
) ∈ P I

∗
N for every d ∈ ∆∗. Hence, for every b ∈ O∗, (bI

∗
, aI

∗
) ∈

(¬P)I
∗
Y and so for every b ∈ O∗, I∗ |= ¬P (b, a).

- If v∃∃¬-rule is applicable, we have four cases (i) R = P, S = Q, (ii) R = P, S = Q−,

(iii) R = P−, S = Q and (iv) R = P−, S = Q−. We consider the case (iv), the other

cases can be argued similarly. By assumption, ∀b ∈ O∗ [¬Q(b, a) ∈ A′], ∃P− v ∃Q− ∈ T

and ¬P (c, a) ∈ A′′, for some c ∈ O∗. By induction hypothesis, I∗ |= ¬Q(b, a), for

every b ∈ O∗ ⇒ ∀d ∈ ∆∗[(d, aI
∗
) ∈ (¬Q)I

∗
Y = (Q)I

∗
N] ⇒ aI

∗ ∈ (∃Q−)I
∗
N . Hence,

aI
∗ ∈ (∃Q−)I

∗
N ⊆ (∃P−)I

∗
N . This implies, (d, aI

∗
) ∈ (P)I

∗
N for all d ∈ ∆∗. Then, for

every c ∈ O∗, (cI
∗
, aI

∗
) ∈ (¬P)I

∗
Y . Hence, for every c ∈ O∗, I∗ |= ¬P (c, a).

- If v∃@¬-rule is applicable, we have four cases (i) R = P, S = Q, (ii) R = P, S = Q−, (iii)

R = P−, S = Q and (iv) R = P−, S = Q−. We consider the case (iv), the other cases

can be argued similarly. By assumption, Q(b, a) ∈ A′, ∃P− v ¬∃Q− ∈ T and ¬P (c, a) ∈

www.manaraa.com

85

A′′, for every c ∈ O∗. By induction hypothesis, I∗ = Q(b, a) ⇒ (bI
∗
, aI

∗
) ∈ QI

∗
Y ⇒

(aI
∗
, bI

∗
) ∈ (Q−)I

∗
Y ⇒ aI

∗ ∈ (∃Q−)I
∗
Y . Hence, aI

∗ ∈ (∃Q−)I
∗
Y ⊆ (∃P−)I

∗
N . This implies

(d, aI
∗
) ∈ P I

∗
N for every d ∈ ∆∗. Then, for every c ∈ O∗, (cI

∗
, aI

∗
) ∈ P I

∗
N = (¬P)I

∗
Y .

Hence, for every c ∈ O∗, I∗ |= ¬P (c, a).

A.1.3 Proof of Lemma 2.3.3

Lemma 2.3.3 Let Σ = 〈A, T 〉 be a DL-LiteR KB. Then ∀α ∈ A ∪ T , J |= α.

Proof. First we consider an assertion α ∈ A. There are four cases:

- α = A(a) ∈ A. Then, A(a) ∈ A∗ ⇒ aJ = a ∈ AJY ⇒ J |= A(a),

- α = ¬A(a) ∈ A. Then, ¬A(a) ∈ A∗ ⇒ aJ = a ∈ AJN ⇒ J |= ¬A(a),

- α = P (a, b) ∈ A. Then, P (a, b) ∈ A∗ ⇒ (aJ , bJ) = (a, b) ∈ PJY ⇒ J |= P (a, b) and

- α = ¬P (a, b) ∈ A. Then, ¬P (a, b) ∈ A∗ ⇒ (aJ , bJ) = (a, b) ∈ PJN ⇒ J |= ¬P (a, b).

Next we consider subsumptions in T . We recall that for each subsumption E v F ∈ T , we

must show that EJY ⊆ F
J
Y and FJN ⊆ E

J
N . In the following we shall use, without mention, the

fact that A∗ is completed. We also recall that for any B ∈ NC , (¬B)JY = BJN and (¬B)JN = BJY .

There are several cases.

- α = A v L and let D ∈ NC . There are two sub-cases.

- case 1: L = D. Then, a ∈ AJY ⇒ A(a) ∈ A∗ ⇒ D(a) ∈ A∗(vNL − rule)⇒ a ∈ DJY .

Similarly, a ∈ DJN ⇒ ¬D(a) ∈ A∗ ⇒ ¬A(a) ∈ A∗(vNL¬ − rule)

⇒ a ∈ AJN .

- case 2: L = ¬D. Then, a ∈ AJY ⇒ A(a) ∈ A∗ ⇒ ¬D(a) ∈ A∗(vNL − rule) ⇒ a ∈

DJN ⇒ a ∈ (¬D)JY . Similarly, a ∈ (¬D)JN ⇒ a ∈ DJY ⇒ D(a) ∈ A∗ ⇒ ¬A(a) ∈

A∗(vNL¬ − rule)⇒ a ∈ AJN .

- α = A v ∃R and let P ∈ NR. There are two sub-cases.

www.manaraa.com

86

- case 1: R = P . Then, a ∈ AJY ⇒ A(a) ∈ A∗ ⇒ P (a, b) ∈ A∗(vN∃ − rule), where b

is fresh ⇒ (a, b) ∈ PJY ⇒ a ∈ (∃P)JY . Similarly, a ∈ (∃P)JN

⇒ ∀b ∈ O∗, (a, b) ∈ PJN ⇒ ∀b ∈ O∗,¬P (a, b) ∈ A∗ ⇒ ¬A(a) ∈ A∗(vN∃¬ − rule) ⇒

a ∈ AJN .

- case 2 : R = P−. Then, a ∈ AJY ⇒ A(a) ∈ A∗ ⇒ P (b, a) ∈ A∗(vN∃ − rule), where

b is fresh ⇒ (b, a) ∈ PJY ⇒ a ∈ (∃P−)JY . Similarly, a ∈ (∃P−)JN

⇒ ∀b ∈ O∗, (b, a) ∈ PJN ⇒ ∀b ∈ O∗,¬P (b, a) ∈ A∗ ⇒ ¬A(a) ∈ A∗(vN∃¬ − rule) ⇒

a ∈ AJN .

- α = ∃R v L. There are four sub-cases (R = P,L = A), (R = P−, L = A), (R = P,L =

¬A) and (R = P−, L = ¬A), where A ∈ NC , P ∈ NR. We shall prove only two sub-cases,

The other two sub-cases can be proved similarly.

- case 1: R = P and L = A. Then, a ∈ (∃P)JY ⇒ ∃b ∈ O∗, (a, b) ∈ PJY ⇒ P (a, b) ∈

A∗ ⇒ A(a) ∈ A∗(v∃L − rule)⇒ a ∈ AJY . Similarly, a ∈ AJN ⇒ ¬A(a) ∈ A∗ ⇒ ∀b ∈

O∗,¬P (a, b) ∈ A∗(v∃L¬ − rule)⇒ ∀b ∈ O∗, (a, b) ∈ PJN ⇒ a ∈ (∃P)JN .

- case 2: R = P− and L = ¬A. Then, a ∈ (∃P−)JY ⇒ ∃b ∈ O∗, (b, a) ∈ PJY ⇒

P (b, a) ∈ A∗ ⇒ ¬A(a) ∈ A∗(v∃L − rule) ⇒ a ∈ (¬A)JY . Similarly, a ∈ (¬A)JN ⇒

a ∈ AJY ⇒ A(a) ∈ A∗ ⇒ ∀b ∈ O∗,¬P (b, a) ∈ A∗(v∃L¬ − rule) ⇒ ∀b ∈ O∗, (b, a) ∈

PJN ⇒ a ∈ (∃P−)JN .

- α = ∃R v ∃S. There are four sub-cases (R = P, S = Q), (R = P−, S = Q), (R = P, S =

Q−) and (R = P−, S = Q−), where P,Q ∈ NR. Here we shall prove only two sub-cases.

The others can be proved similarly.

- case 1: R = P and S = Q−. Then, a ∈ (∃P)JY ⇒ ∃b ∈ O∗, (a, b) ∈ PJY ⇒ P (a, b) ∈

A∗ ⇒ Q(c, a) ∈ A∗(v∃∃ − rule), c is fresh ⇒ (c, a) ∈ QJY ⇒ (a, c) ∈ (Q−)JY ⇒ a ∈

(∃Q−)JY . Similarly, a ∈ (∃Q−)JN ⇒ ∀b ∈ O∗, (b, a) ∈ QJN ⇒ ∀b ∈ O∗,¬Q(b, a) ∈

A∗ ⇒ ∀c ∈ O∗,¬P (a, c) ∈ A∗(v∃∃¬ − rule)⇒ ∀c ∈ O∗, (a, c) ∈ PJN ⇒ a ∈ (∃P)JN .

- case 2: R = P− and S = Q−. Then, a ∈ (∃P−)JY ⇒ ∃b ∈ O∗, (b, a) ∈ PJY ⇒

P (b, a) ∈ A∗ ⇒ Q(c, a) ∈ A∗(v∃∃ − rule), c is fresh ⇒ (c, a) ∈ QJY ⇒ (a, c) ∈

www.manaraa.com

87

(Q−)JY ⇒ a ∈ (∃Q−)JY . Similarly, a ∈ (∃Q−)JN ⇒ ∀b ∈ O∗, (b, a) ∈ QJN ⇒ ∀b ∈

O∗,¬Q(b, a) ∈ A∗ ⇒ ∀c ∈ O∗,¬P (c, a) ∈ A∗

(v∃∃¬ − rule)⇒ ∀c ∈ O∗, (c, a) ∈ PJN ⇒ a ∈ (∃P−)JN .

- α = R v E. There are eight sub-cases (R = P,E = Q), (R = P−, E = Q), (R =

P,E = Q−), (R = P−, E = Q−), (R = P,E = ¬Q), (R = P−, E = ¬Q), (R = P,E =

¬Q−) and (R = P−, E = ¬Q−), where P,Q ∈ NR. We argue only three of these.

- case 1: R = P and E = Q−. Then, (a, b) ∈ PJY ⇒ P (a, b) ∈ A∗ ⇒ Q(b, a) ∈

A∗(vRE − rule) ⇒ (b, a) ∈ QJY ⇒ (a, b) ∈ (Q−)JY . Similarly, (a, b) ∈ (Q−)JN ⇒

(b, a) ∈ QJN ⇒ ¬Q(b, a) ∈ A∗ ⇒ ¬P (a, b) ∈ A∗(vRE¬ − rule)⇒ (a, b) ∈ PJN .

- case 2: R = P− and E = ¬Q. Then, (a, b) ∈ (P−)JY ⇒ (b, a) ∈ PJY ⇒ P (b, a) ∈

A∗ ⇒ ¬Q(a, b) ∈ A∗(vRE − rule)⇒ (a, b) ∈ QJN ⇒ (a, b) ∈

(¬Q)JY . Similarly, (a, b) ∈ (¬Q)JN ⇒ (a, b) ∈ QJY ⇒ Q(a, b) ∈ A∗ ⇒ ¬P (b, a) ∈

A∗(vRE¬ − rule)⇒ (b, a) ∈ PJN ⇒ (a, b) ∈ (P−)JN .

- case 3: R = ¬P− and E = ¬Q−. Then, (a, b) ∈ (¬P−)JY ⇒ (a, b) ∈ (P−)JN ⇒

(b, a) ∈ PJN ⇒ ¬P (b, a) ∈ A∗ ⇒ ¬Q(b, a) ∈ A∗(vRE − rule) ⇒ (b, a) ∈ QJN ⇒

(a, b) ∈ (Q−)JN ⇒ (a, b) ∈ (¬Q−)JY . Similarly, (a, b) ∈ (¬Q−)JN ⇒ (a, b) ∈ (Q−)JY ⇒

(b, a) ∈ QJY ⇒ Q(b, a) ∈ A∗ ⇒ P (b, a) ∈ A∗(vRE¬ − rule)⇒ (b, a) ∈ PJY ⇒ (a, b) ∈

(P−)JY ⇒ (a, b) ∈ (¬P−)JN .

- α = A v ¬∃R. There are two sub-cases.

- case 1: R = P , where P ∈ NR. Then, a ∈ AJY ⇒ A(a) ∈ A∗ ⇒ ∀b ∈ O∗,¬P (a, b) ∈

A∗(vN@ − rule) ⇒ ∀b ∈ O∗, (a, b) ∈ PJN ⇒ a ∈ (∃P)JN ⇒ a ∈ (¬∃P)JY . Similarly,

a ∈ (¬∃P)JN ⇒ a ∈ (∃P)JY ⇒ ∃b ∈ O∗, (a, b) ∈ PJY ⇒ P (a, b) ∈ A∗ ⇒ ¬A(a) ∈

A∗(vN@¬ − rule)⇒ a ∈ AJN .

- case 2 : R = P−. Then, a ∈ AJY ⇒ A(a) ∈ A∗ ⇒ ∀b ∈ O∗,¬P (b, a) ∈ A∗(vN@ −

rule) ⇒ ∀b ∈ O∗, (b, a) ∈ PJN ⇒ a ∈ (∃P−)JN ⇒ a ∈ (¬∃P−)JY . Similarly,

a ∈ (¬∃P−)JN ⇒ a ∈ (∃P−)JY ⇒ ∃b ∈ O∗, (b, a) ∈ PJY ⇒ P (b, a)

∈ A∗ ⇒ ¬A(a) ∈ A∗(vN@¬ − rule)⇒ a ∈ AJN .

www.manaraa.com

88

- α = ∃R v ¬∃S. There are four sub-cases (R = P, S = Q), (R = P−, S = Q), (R = P, S =

Q−) and (R = P−, S = Q−), where P,Q ∈ NR. We shall prove only two sub-cases; other

two sub-cases can be proved similarly.

- case 1: R = P and S = Q−. Then, a ∈ (∃P)JY ⇒ ∃b ∈ O∗, (a, b) ∈ PJY ⇒ P (a, b) ∈

A∗ ⇒ ∀c ∈ O∗,¬Q(c, a) ∈ A∗(v∃@− rule)⇒ ∀c ∈ O∗, (c, a) ∈ QJN ⇒ a ∈ (∃Q−)JN ⇒

a ∈ (¬∃Q−)JY . Similarly, a ∈ (¬∃Q−)JN ⇒ a ∈ (∃Q−)JY ⇒ ∃b ∈ O∗, (b, a) ∈ QJY ⇒

Q(b, a) ∈ A∗ ⇒ ∀c ∈ O∗,¬P (a, c) ∈ A∗(v∃@¬ − rule)⇒ ∀c ∈ O∗, (a, c) ∈ PJN ⇒ a ∈

(∃P)JN .

- case 2: R = P− and S = Q−. Then, a ∈ (∃P−)JY ⇒ ∃b ∈ O∗, (b, a) ∈ PJY ⇒

P (b, a) ∈ A∗ ⇒ ∀c ∈ O∗,¬Q(c, a) ∈ A∗(v∃@ − rule)⇒ ∀c ∈ O∗,

(c, a) ∈ QJN ⇒ a ∈ (∃Q−)JN ⇒ a ∈ (¬∃Q−)JY . Similarly, a ∈ (¬∃Q−)JN ⇒ a ∈

(∃Q−)JY ⇒ ∃b ∈ O∗, (b, a) ∈ QJY ⇒ Q(b, a) ∈ A∗ ⇒ ∀c ∈ O∗,¬P (c, a)

∈ A∗(v∃@¬ − rule)⇒ ∀c ∈ O∗, (c, a) ∈ PJN ⇒ a ∈ (∃P−)JN .

www.manaraa.com

89

BIBLIOGRAPHY

Acciarri, A., Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M., Palmieri, M., and

Rosati, R. (2005). Quonto: querying ontologies. In AAAI, volume 5, pages 1670–1671.

Artale, A., Calvanese, D., Kontchakov, R., and Zakharyaschev, M. (2009). The dl-lite family

and relations. Journal of artificial intelligence research, 36(1):1–69.

Avron, A. (1991). Natural 3-valued logicscharacterization and proof theory. The Journal of

Symbolic Logic, 56(01):276–294.

Baader, F. (2003). The description logic handbook: Theory, implementation and applications.

Cambridge university press.

Baader, F., Lutz, C., and Suntisrivaraporn, B. (2006). Efficient reasoning in EL+. In Proccedings

2006 International Workshop on Description Logics, volume 12, pages 15–26.

Bao, J., Slutzki, G., and Honavar, V. (2007). Privacy-preserving reasoning on the semantic

web. In Web Intelligence, IEEE/WIC/ACM Conference,791–797.

Barth, A. and Mitchell, J. C. (2005). Enterprise privacy promises and enforcement. In Pro-

ceedings of the 2005 workshop on Issues in the theory of security, pages 58–66. ACM.

Bell, D. E. and LaPadula, L. J. (1973). Secure computer systems: Mathematical foundations.

Technical report, DTIC Document.

Bienvenu, M., Ortiz, M., Šimkus, M., and Xiao, G. (2013). Tractable queries for lightweight

description logics. In Proceedings of the Twenty-Third UJCAI,768–774.

Biskup, J. and Tadros, C. (2012). Revising belief without revealing secrets. In Foundations of

Information and Knowledge Systems, pages 51–70. Springer.

www.manaraa.com

90

Biskup, J., Tadros, C., and Wiese, L. (2010). Towards controlled query evaluation for incom-

plete first-order databases. In Foundations of Information and Knowledge Systems, pages

230–247. Springer.

Biskup, J. and Weibert, T. (2008). Keeping secrets in incomplete databases. International

Journal of Information Security, 7(3):199–217.

Blackburn, P., De Rijke, M., and Venema, Y. (2002). Modal Logic, volume 53. Cambridge

University Press.

Brachman, R. J., Levesque, H. J., and Reiter, R. (1992). Knowledge representation. MIT press.

Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M., and Rosati, R. (2007). Tractable

reasoning and efficient query answering in description logics: The dl-lite family. Journal of

Automated reasoning, 39(3):385–429.

Delaitre, V. and Kazakov, Y. (2009). Classifying ELH ontologies in SQL databases. In

Proceedings of OWL: Experiences and Directions (OWLED 2009).

Dyer, M. and Greenhill, C. (2000). The complexity of counting graph homomorphisms. Random

Structures and Algorithms, 17(3-4):260–289.

Fagin, R., Moses, Y., Vardi, M. Y., and Halpern, J. Y. (2003). Reasoning about knowledge.

MIT press.

Fitting, M. (1985). A Kripke-Kleene semantics for logic programs*. The Journal of Logic

Programming, 2(4):295–312.

Grau, B. C., Kharlamov, E., Kostylev, E. V., and Zheleznyakov, D. (2013). Controlled query

evaluation over OWL 2 RL ontologies. In The Semantic Web–ISWC 2013, pages 49–65.

Springer.

Gutierrez-Basulto, V., Jung, J. C., and Lutz, C. (2012). Complexity of branching temporal

description logics. In ECAI, pages 390–395.

www.manaraa.com

91

Halpern, J. Y. and O’Neill, K. R. (2005). Anonymity and information hiding in multiagent

systems. Journal of Computer Security, 13(3):483–514.

Hemaspaandra, E. (2000). The complexity of poor mans logic. In STACS 2000, pages 230–241.

Springer.

Hitzler, P., Krotzsch, M., and Rudolph, S. (2009). Foundations of semantic web technologies.

CRC Press.

Horrocks, I., Hustadt, U., Sattler, U., and Schmidt, R. (2006). Computational modal logic.

Handbook of modal logic, 3:181–245.

Jafari, M., Fong, P. W., Safavi-Naini, R., Barker, K., and Sheppard, N. P. (2011). Towards

defining semantic foundations for purpose-based privacy policies. In Proceedings of the first

ACM conference on Data and application security and privacy, pages 213–224. ACM.

Kagal, L., Finin, T., and Joshi, A. (2003). A policy based approach to security for the semantic

web. In International Semantic Web Conference, volume 2870, pages 402–418. Springer.

Kazakov, Y., Krötzsch, M., and Simanč́ık, F. (2014). The incredible elk. JAR, 53(1):1–61.

Kripke, S. A. (1963). Semantical analysis of modal logic 1 normal modal propositional calculi.

Mathematical Logic Quarterly, 9(5-6):67–96.

Krishnasamy Sivaprakasam, G. and Slutzki, G. (2016). Secrecy-preserving query answering

in ELH knowledge bases. In Proceedings of 8th International Conference on Agents and

Artificial Intelligence.

Krötzsch, M. (2012). Owl 2 profiles: An introduction to lightweight ontology languages. In

Proceedings of the 8th Reasoning web summer school, pages 112–183. Springer.

Lutz, C. and Schroder, L. (2010). Probabilistic description logics for subjective uncertainty. In

Proceedings of the 12th International Conference on Principles of Knowledge Representation

and Reasoning, pages 393–403.

www.manaraa.com

92

Lutz, C., Sturm, H., Wolter, F., and Zakharyaschev, M. (2001). Tableaux for temporal de-

scription logic with constant domains. In Automated Reasoning, pages 121–136. Springer.

Lutz, C., Toman, D., and Wolter, F. (2008). Conjunctive query answering in EL using a

database system. In Proceedings of the 5th International Workshop on OWL: Experiences

and Directions (OWLED 2008).

Mei, J., Liu, S., Xie, G., Kalyanpur, A., Fokoue, A., Ni, Y., Li, H., and Pan, Y. (2009). A

practical approach for scalable conjunctive query answering on acyclic EL+ knowledge base.

In The Semantic Web-ISWC 2009, pages 408–423. Springer.

Mendez, J. and Suntisrivaraporn, B. (2009). Reintroducing CEL as an OWL 2 EL reasoner.

In Proceedings of 22nd International Workshop on Description Logics.

Ortiz, M. and Šimkus, M. (2012). Reasoning and query answering in description logics. In

Proceedings of the 8th Reasoning web summer school, pages 1–53. Springer.

Sicherman, G. L., De Jonge, W., and Van de Riet, R. P. (1983). Answering queries without

revealing secrets. ACM Transactions on Database Systems (TODS), 8(1):41–59.

Tao, J., Slutzki, G., and Honavar, V. (2010). Secrecy-preserving query answering for instance

checking in EL. In Proceedings of Web Reasoning and Rule Systems, 195–203.

Tao, J., Slutzki, G., and Honavar, V. (2012). Pspace tableau algorithms for acyclic modalized

ALC. Journal of Automated Reasoning, 49(4):551–582.

Tao, J., Slutzki, G., and Honavar, V. (2014). A conceptual framework for secrecy-preserving

reasoning in knowledge bases. TOCL, 16(1):3:1–3:32.

Tsukada, Y., Mano, K., Sakurada, H., and Kawabe, Y. (2009). Anonymity, privacy, onymity,

and identity: A modal logic approach. In Computational Science and Engineering, 2009.

CSE’09. International Conference on, volume 3, pages 42–51. IEEE.

Weitzner, D. J., Abelson, H., Berners-Lee, T., Feigenbaum, J., Hendler, J., and Sussman, G. J.

(2008). Information accountability. Communications of the ACM, 51(6):82–87.

	2016
	Secrecy-preserving reasoning in simple description logic knowledge bases
	Gopalakrishnan Krishnasamy Sivaprakasam
	Recommended Citation

	TABLE OF CONTENTS
	LIST OF FIGURES
	ACKNOWLEDGEMENTS
	ABSTRACT
	1. INTRODUCTION
	1.1 Description Logics
	1.2 Secrecy-preserving Query Answering Problem

	2. SECRECY-PRESERVING REASONING IN ACYCLIC DL- LiteR KNOWLEDGE BASES
	2.1 Introduction
	2.2 Preliminaries - Syntax and semantics of DL-LiteR
	2.2.1 Syntax
	2.2.2 Semantics

	2.3 Computation of A*
	2.4 Graph representation of ABoxes and BCQs over DL - LiteR KBs
	2.5 Secrecy-Preserving Reasoning in DL - LiteR KBs
	2.6 Answering Queries
	2.7 Complexities of computing A*, E and Query Answering
	2.8 Conclusions

	3. SECRECY-PRESERVING QUERY ANSWERING IN ELH KNOWLEDGE BASES
	3.1 Introduction
	3.2 Syntax and Semantics
	3.3 Computation of A* and T*
	3.4 Secrecy-Preserving Reasoning
	3.5 Query Answering
	3.6 Conclusions

	4. KEEPING SECRETS IN MODALIZED DL KNOWLEDGE BASES
	4.1 Introduction
	4.2 Syntax and Semantics of ELH
	4.3 Computation of a Model for ELH KB and A*
	4.4 Secrecy-Preserving Reasoning in ELH KBs
	4.5 Query Answering
	4.6 Conclusions

	5. SUMMARY AND DISCUSSION
	A. ADDITIONAL MATERIAL
	A.1 Additional Material for Chapter 2
	A.1.1 Proof of Lemma 2.3.1
	A.1.2 Proof of Lemma 2.3.2
	A.1.3 Proof of Lemma 2.3.3

	BIBLIOGRAPHY

